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Image processing and object recognition technologies for detecting defects on the surfaces of
a variety of materials is critical to ensuring the safety and durability of infrastructure. That is why
this topic and problems of the field of defect detection were chosen in the study. Therefore, the
development of effective image processing methods for defect identification, especially in low-
light conditions and hard-to-reach places, is of great relevance. The research is a comparison of
classical image processing methods with modern deep learning algorithms such as CNN (Convo-
lutional Neural Networks) and YOLO (You Only Look Once). The study analyzes the effective-
ness of these methods under specific defect inspection conditions, including diffuse lighting and
device mobility. An important aspect is the use of microcomputers such as Raspberry Pi and
Nvidia Jetson Nano, which ensures the mobility and autonomy of the system. The practical value
of the research lies in the implementation of effective image processing methods for detecting de-
fects on the surfaces of engineering structures. This makes it possible to significantly improve the
accuracy of surface defect identification, which is confirmed by the loU (Intersection over Union)
and Dice metrics. In particular, using CNNs for surface defect identification showed 35% better
results compared to existing implementations of similar networks and 12% more efficient com-
pared to YOLO. On the other hand, YOLO proved to be more productive in terms of processing
frames per second on microcomputers, which is important for real-time monitoring.

Keywords: computer vision, deep learning, image processing, surface defect detection, Rasp-
berry PI, Nvidia Jetson Nano, performance metrics.

Overview.

The quality and accuracy of the analysis of objects in the images depends on a number of
different conditions and features of the studied objects. For example, when processing images
to monitor the condition of surface defects, diffuse illumination is an important aspect when
processing images in dark and hard-to-reach areas. Therefore, taking into account these fea-
tures, the efficiency analysis is carried out using single-board computers to ensure the mobility
of devices with an attached camera.

The complexity of developing and improving image processing methods in the field of
flaw detection lies in the variety of defects, materials, and lighting conditions. Furthermore, it
is essential to consider the large amount of training data and the selection of optimal algorithms
for evaluating efficiency and reliability.

Object recognition is performed based on various algorithms and data analysis models. In
general, these methods can be divided into two main categories: classical image processing
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methods and the latest deep learning methods that apply neural networks. A combination of
both groups of image processing methods is often used to solve defects analysis problems.

The classic methods include the following options [1]:

e Image filtering to highlight distinctive features with consideration of blurring to re-
move noise.

e Morphological operations for highlighting the shape of objects.

e Algorithms for identifying contours of objects for dividing regions in images.

o Thresholding of pixel values above or below a given threshold to highlight objects by
certain colors.

Research results obtained in works [2—6] showed intensive use of modern deep learning
methods: Convolutional Neural Networks (CNN), YOLO (You Only Look Once), Region-
based CNN (R-CNN), Mask R-CNN, and Generative Adversarial Networks (GAN). They have
different architectures and purposes in the field of image processing and computer vision. The
main difference between them:

o CNNs are used to classify and extract features in images.

e YOLO provides fast detection of objects in real time.

e R-CNN identifies objects and their boundaries with high accuracy, but at a lower
speed.

o Mask R-CNN adds object segmentation capability to R-CNN.

e GANSs generate new, synthetic, real-world-like data, improving training datasets.

Taking into account the above-described features of the application of such algorithms,
CNN and YOLO models have been implemented to compare the efficiency and accuracy in the
tasks of recognizing defects on the surfaces of the investigated objects on the image.

During the implementation of CNN in the recognition tasks, UNet deep learning architec-
ture is used for image segmentation. Such an architecture is particularly effective for tasks
where it is necessary to determine the boundaries and shape of elements in the defect recogni-
tion image. A feature of this architecture is that the structure is divided into two parts: encoder
and decoder. The first stage serves to reduce the size of the image with a certain amount of
information, the final one - increases the size while restoring the original information. At the
same time, segmentation of the image of surface defects of objects takes place based on the
used series of convolutional and connecting layers. The structure of the neural network and its
application features are described, the results of defect identification are considered in previous
works [7-9]. However, the selection of model parameters, the number of neural network lay-
ers, and other preparatory stages should be performed experimentally for each data set.

After that, it is worth evaluating the effectiveness of image processing using machine
learning methods on defect images using quality metrics and data selection. Meanwhile, the
optimal values of the model parameters can be obtained experimentally based on the number of
layers, image size, number of filters for each layer, activation function, estimation of the loss
function, the result of data augmentation, as well as hyperparameter settings.

The first stage of implementation is the preparation of data for training. All images are
augmented by applying random rotations of +/- 5% and then split into training, validation, and
test datasets of 70, 20, and 10%, respectively. Images are resized according to convolutional
neural network (CNN) architecture requirements.

Among the existing software implementations [10] of defect segmentation with CNN, a
dataset was used for training. Therefore, the work used 11200 images with a standardized size
of 448 by 448.
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The datasets include images of crack-type defects with noise (dirt, seams, and other ob-
jects) on the surfaces. For comparison, the existing data set was supplemented with images of
defects such as cracks on cylindrical objects with augmentation associated with image rota-
tions.

In each image, the expected polygonal areas (annotation of images) of defects on the sur-
faces in the Roboflow environment are selected to calculate the accuracy [11].

A CNN model was created based on the UNet architecture, trained using the PyTorch li-
brary and converted to the ONNX format. Considering the volume of the model, the ONNX
Runtime and OpenCV libraries were used, which help to perform a faster assessment of dam-
age to the surfaces of engineering structures in real time [12].

Visual Geometry Group 16 (VGG16) is used as a deep learning architecture. The struc-
ture of this network: 16 layers, consisting of 13 convolutional and 3 fully connected layers.
VGG16 is simpler in terms of architecture [10], compared to ResNet.

The main steps of the operational scheme of the study are shown in Fig. 1, including the
collection and pre-processing of data on engineering objects with crack-type defects. Then, two
neural network architectures are chosen - CNN and YOLO, which are trained on more power-
ful computers with better graphics processor characteristics and on extended data sets. After
that, the performance of the models is evaluated using the accuracy segmentation metric, and
the frame-per-second processing efficiency is analyzed on Raspberry Pi and Nvidia Jetson
Nano single-board computers.
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Fig. 1. Scheme of operation of the main steps

Another implementation of deep learning using the YOLO library was performed to clas-
sify objects in real time. Based on the grid, areas and confidence of similarity of objects are
determined. Python version 3.10.12 was chosen as the main programming language because it
works well enough with libraries designed for machine learning. The YOLO model was trained
using Ultralytics YOLOV8.0.196 [13] and PyTorch version 2.1.0 [14] with Compute Unified
Device Architecture (CUDA) version 12.2 support. For comparison, the Google Colab Re-
search environment was used for the corresponding implementation on the default free
NVIDIA Tesla T4 graphics accelerator with 15 GB of memory.
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After this, the training time analysis was performed, which showed that the training pro-
cess took approximately 1 minute for 25 epochs for a model with 168 layers. The total pro-
cessing time of one image consists of the time of preprocessing (on average 3.5 ms), determin-
ing the location of defects (on average 18.2 ms) and adding visual labels to the image (on aver-
age 28.3 ms).

After training, the model is ready for use on single-board devices, where its effectiveness
has been evaluated. As for platforms, there are ready-made robotic platforms JetRacer Al Kit
and PiRacer Pro Al Kit, which allow recognition of objects in motion based on running trained
models.

Performance evaluation for detection.

The characteristics of single-board computers affect the efficiency and effectiveness of
identifying defects on the surfaces of engineering structures. Due to limited resources (RAM,
processor power and storage space), it is important to ensure the speed of processing a large
number of video frames.

One of the indicators for evaluating the efficiency (speed) of the method on single-board
devices is the calculation of the processing time of the number of frames per second (FPS).

, c
FPS=
T,—Tg
where Ts; - start time, Tsy- finish time, C - number of frames per video time.

When processing high-resolution images on low-power devices, there may be some de-
lays. Neural network model optimization can be done with the TensorRT engine [15], which is
supported in Nvidia Jetson Nano and is used to work with trained models based on Caffe, Ten-
sorFlow, PyTorch and ONNX. This engine allows memory and GPU bandwidth optimization
based on layer data and tensor fusion processes. Thus, it reduces the overhead of reading and
writing the tensor data for each layer. Such optimization based on TensorRT allows identifying
defects on surfaces ten times faster and with a shorter response time. The created model is con-
verted to ONNX format using PyTorch. After that, it is converted to a file with the model.trt
extension in tensorrt. A small amount of processing FPS may be due to the complexity of the
models.

YOLO models are heavy enough, so to perform image processing with object identifica-
tion on Jetson Nano, it is needs to be investigated in further works with simplified models, for
example, different versions from tiny as it is described in [16]. This is due to the fact that im-
ages with a high resolution reduce the efficiency of processing FPS. Therefore, you need to
resize the image in the datasets to a smaller size.

Based on the results of measurements of the load on the graphic processor during the cor-
responding calculations for the purpose of identifying objects in the image, models with small-
er images can be considered more effective, but the accuracy of identification is not high
enough. And measuring the efficiency of image processing on Nvidia Jetson Nano with differ-
ent resolutions showed the effect of image size on the results of calculating the number of FPS.
Therefore, all images in the datasets are standardized to an average size of 448 by 448. Pro-
cessing of video fragments of different lengths was performed using CNN [10], CNN with the
ONNX Runtime library, and YOLO on Raspberry Pi and Nvidia Jetson Nano microcomputers.
During the processing of each video frame, masks (red highlights) with identified defects are
superimposed on the input image. Processing images and displaying this process takes some
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time, which causes a delay (Table 1), which may depend on the complexity of the neural net-
work and the capabilities of technical means.

Table 1. Processing time of a video fragment on pre-trained models

ML methods Average number of FPS based on video fragments of different lengths
Nvidia Jetson Nano (2 GB) Raspberry Pi 4 (4 GB)
CNN [10] 24 21
CNN 3 ONNX 27 24
Runtime
YOLO 29 26

As mentioned earlier, the training of deep neural networks was performed in the Google
Colab environment. This choice of training environments is related to the limited computing
resources of single-board devices. The resulting model file (pre-trained model) is loaded onto
the device for its execution. Thus, the conducted distributed training allows to speed up the
training time and take into account the limited characteristics of devices such as CPU or GPU,
the amount of RAM.

Therefore, the processing delay can be affected by large video sizes and high bitrates, the
amount of neural network calculations (reduction of encoders and decoders), too many objects
to track, the presence of artifacts or connection problems. However, with the optimization of
the neural network, changes in the accuracy of identification are possible.

In the Table 1 results may be due to GPU and video processing optimizations, hardware
architecture characteristics of Nvidia Jetson Nano (2 GB) and Raspberry Pi 4 (4 GB). The ad-
vantage of Nvidia Jetson Nano is the NVIDIA Maxwell graphics processor, which supports
CUDA and accelerates the processing of large amounts of data. In contrast, the Raspberry Pi 4
does not have this level of graphics acceleration and optimizations.

Evaluation of the accuracy of defect detection.

Intersection over Union (loU) and Dice are metrics for evaluating the accuracy of seg-
mentation (delineation) of regions in images. In Table 2 these performance parameters are used
to evaluate the accuracy of the models.

loU of the union area (the area containing both the original and the projected area) to the
area of intersection of these areas and is calculated

TP

foU=————

TP+ FP+ FN
where TP (True Positive) is the number of pixels that the model correctly identified as an ob-
ject region; FP (False Positive) - the number of pixels that the model mistakenly identified as
an object region; FN (False Negative) - the number of pixels that the model missed.

In the context of image segmentation, the Dice coefficient is also used as a measure of

similarity between the predicted and true masks and is calculated by the formula

2x TP
2XTP+ FP+ FN

Dice=
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Table 2. Indicators of segmentation quality during defect identification

Metric CNN [10] Advanced CNN with YOLO
cylindrical objects in
images
Intersection of Union 0.47 0.63 0.56
Dice 0.6 0.72 0.68

Fig. 2. Examples of image-based defect identification with/without cracks inside a part of a pipe

As shown in Fig. 2, the input and result of image processing are shown with the corroded
part of the pipe without cracks and with cracks. Usually, the data processing method is usually
chosen based on the amount and quality of data available. The increase in volume and im-
provement in the quality of data sets has contributed to the improvement of the identification of
defects, in particular cracks, in cylindrical objects such as pipelines. This allows more accurate
and reliable detection of problem areas and prevention of possible accidents.

Conclusion.

The study compared the efficiency and accuracy of CNN and YOLO neural network ar-
chitectures for various engineering objects. The results of the analysis were used for an extend-
ed set of training and test data. Metrics for evaluating the quality of segmentation procedures,
such as loU and Dice, have shown that CNN provides better results when identifying defects.
In particular, the performance of CNN was found to be 35% higher compared to an existing
implementation of a similar CNN network and 12% better compared to a YOLO-based imple-
mentation.

On the other hand, when analyzing the number of frames per second processed, it is found
that YOLO is more effective for identifying defects on single-board computers such as Rasp-
berry Pi and Nvidia Jetson Nano. In particular, the efficiency of YOLO on these devices is
20.2% and 20.7%, respectively. These results can be explained by the peculiarities of the im-
plementation of the techniques: CNN has a greater depth of the neural network, which allows
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better recognition of complex structures, while the simpler architecture of YOLO provides
higher image processing speed, but lower segmentation accuracy.

Also, the use of TensorRT and ONNX Runtime mechanisms allows you to speed up the
process of identifying defects on microcomputers. In addition, the features of defect identifica-
tion, such as corrosion processes and cracks in structural elements, were considered and ana-
lyzed in a number of well-known scientific works. These studies emphasize the importance of
the relationship between the results of defect diagnosis and the methods of transmission of pro-
cessed images.
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AHAJII3 TIOKA3HUKIB EPEKTUBHOI OBPOBKHU 306PAKEHb
HA RASPBERRY PI TA NVIDIA JETSON NANO

Poman Mucwk
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VY cyyacHOMy CBITi TeXHOJOTii 0OpOOKH 300pakeHb Ta pO3Mi3HABAHHS O0'€KTIB BiIIrparoTh
BaXXJIMBY POJIb y 0araTthoX rajy3siX, 30KpeMa y IeeKTOCKOMii iHKeHEPHUX KOHCTPYKIii. Buss-
JeHHs 1e(EeKTIB Ha TMOBEPXHAX PI3SHOMAHITHHX MaTepiajliB € KPUTHYHO BKIMBUM Ui 3a0e3re-
YyeHHs! O€3MeKH Ta TOBTOBIYHOCTI iH(pacTpykTypu. ToMy yIZOCKOHANCHHS IIBHUAKOMII METOIB
00poOKH 300paxeHs uis ineHTH]iKaIl 1eeKTiB, 0COOIUBO B YMOBaX CJIA0KOTO OCBITJCHHS Ta
Ba)XKOJIOCTYITHHUX MiCIlb, MA€ BEIHKY aKTYaJIbHICTb. JlOCIIPKEHHS TOJISTae y MOPIBHSHHI IMOKa3-
HUKIB €()eKTHUBHOCTI Ta TOYHOCTI CErMEHTAIlil KIIACHYHUX METOJIB 00pOOKH 300pakeHb 3 cydac-
HUMH aJrOpUTMamMu rmdokoro HaBuaHHs, TakuMu sk CNN (Convolutional Neural Networks) ta
YOLO (You Only Look Once). list mopiBHsIHHS €(eKTHBHOCTI 3AiHCHEHO aHAI3 X MOKa3HHU-
KiB 3 HasBHHUX NPHKJIAJIIB peatizallii Ta CTBOPEHIMHU MOEISIMH, SIKi MICTHTB 301IbIIIeHNIT HA0OPiB
300pakeHb JeeKTiB y HWIIHAPUYHUX O00'€KTaX, BUKOHAHY ayrMEHTAIil0 Ta MOBTOPHOMY Ha-
BuaHHIO y cepenouini Google Colab Research.

JocnipkeHHs aHami3ye e()eKTUBHICTh LIMX METOMAIB 3 ypaxyBaHHAM CIelU(IYHHX YMOB Je-
(exToCKOIIT Ha OJHOIIATHUX NMPUCTPOsiX. OCKITBKM Taki MPUCTPOi MalOTh OOMEXeHi 004ncITro-
BaJIbHI XapaKTEPHCTHKU, TO BapTO BHKOPHCTOBYBATH ONTHMI3alLil0 MOJEINi iCHYIOUMMH iHCTpPY-
MEHTaMH JUIsl oKparieHss edexrusrocti. st miei 3amaui o6pano Raspberry Pi 3 o6emom onepa-
tuBHOI nmam’sti 4 I'6 Ta Nvidia Jetson Nano - 2 I'6, 1o 3abe3nedye MOOLIBHICTh Ta aBTOHOMHICTh
cuctemu inentudikauii qedexTiB Ha moBepxHsxX. [IpakTHYHA HIHHICTH TOCII/PKEHHS IOJISIrae y
BIIPOBA/DKEHHI €(DEKTHBHUX METOIIB OOPOOKH 300paKeHb ISl BHSBICHHS JC(PEKTIB HA TIOBEPX-
HAX IH)KEHEpHHUX KOHCTPYKUiH. Lle 103BoIIsIE CyTTEBO OKPANIMTH TOYHICTE iIeHTHIKAIIT Tedek-
TiB, mo miaTeepkeHo Merpukamu loU (Intersection over Union) Ta Dice. Interposani rpagiuni
npuckoproBadi TensorRT y Nvidia Jetson Nano no3sossie 06po6utH Ginbiily KaapiB B CEKYHY, Y
nopiBHsaHHI 3 Raspberry Pi.

3okpema, Bukopuctanus CNN s inentudikanii qedexri mokasano Ha 35% kpaiii pe3ysib-
TaTH MOPIBHIHO 3 ICHYIOUHMH peati3alisiMi CX0XKHUX Mepex Ta Ha 12% edekTuBHilIe MOPiBHIHO
3 YOLO. 3 inmoro 6oky, YOLO BusiBuiacst GibI MPpoIyKTHBHOIO 3 TOYKH 30py 00pOOKH Ka/piB
B CEKYH/ly Ha MiKPOKOMIIT'IOTEpaXx, 1[0 € BAXJIMBUM JJIs PEAbHOTO Yacy MOHITOPHHTY.

Knwuosi crnosa. KOMIT'IOTEpHUIA 3ip, MallMHHE HaBYaHHs, 0OpoOKa 300pa)keHb, BHSBICHHS
noBepxHeBHX AedekTiB, Raspberry PI, Nvidia Jetson Nano, moka3HUKH e(eKTHBHOCTI.
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