ISSN 2224-087X. Enexrponika Ta indopmaniiini Texxosorii. 2024. Bumyck 27. C. 84-101
Electronics and information technologies. 2024. Issue 27. P. 84-101

UDC 004.4°2:004.054 DOI: https://doi.org/10.30970/eli.27.7

DEVELOPMENT OF A SOFTWARE CONTROLLER FOR THE
AUTOMATED CREATION AND MANAGEMENT OF VIRTUAL
RESOURCES FOR RUNNERS

Yu. Korchak, B. Mikh, Yu. Furgala

Ilvan Franko National University of Lviv,
107 Tarnavsky St., UA-79017 Lviv, Ukraine
yuriy.korchak@Inu.edu.ua

The work developed a functional model (prototype) of the controller for the automated creation
and management of runners’ virtual computing resources. The analysis of potential technologies
for its implementation determined the choice of a combination of RPC, cRPC, HTTP/2 and Go
technologies with the protobuff serializer, which meets all modern requirements for a distributed
system’s speed, efficiency and scalability. It has been experimentally proven that the RPC protocol
can serve as a reliable interface for managing resources in virtual environments, providing
convenience and efficient integration with CI/CD systems. Using test scenarios made it possible to
reflect actual operating conditions and integration testing and, as a result, evaluate the interaction
between the MVP and other system components.

Keywords: Continuous Integration, Continuous Delivery, Remote Procedure Call, gRPC,
cRPC, HTTP/2, Golang, GitHub Actions, runner, controller, MVP.

Introduction

In today's world, where technologies are developing at an incredible speed, and the
requirements for software efficiency are constantly growing, the automation of the development
and delivery processes of software products is becoming critically important [1, 2]. As an
example, the Continuous Integration (CI) and Continuous Delivery (CD) paradigms provide a
framework for rapid and reliable integration and delivery of software products, which is critical
for software development companies [3].

Flexible management of virtual resources becomes an integral part of this process, as it
allows to quickly perform such tasks as training models, deploying programs, and automating
testing [4]. The development of a software controller for automating the management of virtual
resources is an important task, especially one that can use any virtualization technology, provided
that a communication interface with the controller is implemented.

This paper presents a software solution based on the use of the Connect Remote Procedure
Call (cRPC) framework, which allows for the integration of virtualization and containerization
platforms. cRPC provides a high level of abstraction and independence from programming
languages and virtualization technologies, which allows you to effectively adapt to various
development environments and code execution on different platforms.

© Korchak Yu., Mikh B., Furgala Yu. 2024

https://doi.org/10.30970/eli.27.7
mailto:yuriy.korchak@lnu.edu.ua

Yu. Korchak, B. Mikh, Yu. Furgala 85
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

The choice of technologies and their justification

RPC, ConnectRPC, Golang, and Protocol Buffers technologies were chosen for the
project’s implementation. Cl and CD were used as software development methodologies, and
GitHub Actions (GHA) was used as a development environment. Let's consider in more detail
the practicality of choosing such software technologies.

First of all, it should be noted that Cl and CD allow you to automate and optimize the
processes of development, testing and deployment of software products, or to automate routine
or complex processes, such as training artificial intelligence models, building and delivering a
software product to end users, automating testing, etc.

Cl cb

Fig. 1. General diagram of CI1/CD paradigms.

These paradigms (see Fig. 1) provide a continuous cycle of integrating code changes and
delivering them to end users, which significantly increases the speed and quality of software
product development.

Cl is a practice that involves regularly placing all changes in work activities (for example,
raw code) in the main development branch or project [5]. The main components of the ClI
paradigm are: automated code assembly, automated testing, code analysis, and security.

CD is a software development practice that works closely with CI to automate deployment
(Fig. 1) [6]. After the code has been tested and compiled as part of the CI process, the CD ensures
that it is packaged with all the necessary components for deployment to any environment. CD
covers the entire process from provisioning the infrastructure to deploying the application to a
test or production environment. The main components of the CD paradigm: automatic
deployment, monitoring and feedback, configuration management, readiness for deployment.

All these steps are performed on the smallest atomic units of CI/CD — runners that receive
scripts to execute specific commands through instructions (pipelines). A pipeline is a set of
automated steps executed sequentially and described by particular commands in the context of a
YAML file. A pipeline consists of several stages, building code, running tests, analyzing code
quality, and deploying to test or production environments [7]. Each step is performed on the
runner. These steps are grouped into jobs. A Job is a single step or set of commands executed in
a CI/CD process. A Job can include tasks such as building code, running tests, analyzing code,
deploying and running software in its environment, etc. Each job is executed in an isolated
environment.

Runner is a computing node or agent that performs tasks described in advance using
specialized commands. It helps automate the building, testing and deploying software [8].
Runners function as CI/CD work units, running tasks defined in the project configuration. They
are divided into common (for several projects simultaneously, do not require a specific
environment) and unique (for a particular project, specific setting). Runners automatically
perform tasks defined in scripts or project configuration files. One of the key features of runners
is their ephemerality, which means creating a new, clean environment each time complete tasks.

86 Yu. Korchak, B. Mikh, Yu. Furgala
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

This is important to ensure consistency and predictability of test and build results. For example,
having the same environment during testing is necessary. In that case, the runner creates an
isolated environment that disappears after the task is completed, thus guaranteeing the stability
and repeatability of the processes. Advantages of using runners include process automation,
scalability and flexibility, parallelism and isolation, automatic recovery, tracing and logging.
Thanks to these features, runners act as an indispensable component in the automation of CI/CD
processes, allowing developers to increase productivity, reduce development time and ensure
high-quality end products.

As the development environment, GitHub Actions was chosen, an automation platform
integrated directly into GitHub that allows you to automate all aspects of software development
processes, including tests, builds, deployment, integration and delivery (CI/CD). The use of
GHA significantly simplifies the development and maintenance of projects due to the automation
of routine tasks and the implementation of continuous testing and deployment processes [9].

The Remote Procedure Call (RPC) protocol is used for client-server interaction - a
fundamental technology for developing distributed, client-server applications. Historically, RPC
was developed in the 1980s as part of the Apollo Network Computing System project [10] and
further standardized in the 1990s as part of the Open Network Computing Remote Procedure
Call. This system used Remote Procedure Call to provide interoperability between distributed
systems, allowing developers to communicate between different computers on a network as if
using local server procedures. Thanks to its efficiency and flexibility, RPC gradually became
almost the leading solution for the implementation of distributed applications that require reliable
mechanisms of interaction with each other under heavy service loads. Google subsequently
extended the concept of RPC with the introduction of gRPC in 2015 [11], extending the concept
of RPC as such. In addition, from that moment, gRPC began to successfully compete with the
only REST API technology available at that time, which was already morally outdated at that
time and had many shortcomings precisely in the context of large distributed loads.

gRPC is an open framework [12] that allows you to quickly and efficiently create
interoperable services using HTTP/2 for transport, while REST uses an older version of the
HTTP/1.1 data transfer protocol. gRPC enables the use of bi-directional streaming, i.e. a
communication or communication channel that is constantly supported by both parties, and
provides efficient and lossless data validation, serialization and deserialization using the Protocol
Buffers tool.

Fig. 2 shows the client-server interaction diagram in the RPC protocol. RPC has the
following sequence of procedures (see Fig. 2):

1. initialization of the call on the client machine: the client initiates the procedure call,
which is sent to the client module, which serializes the call into a package;

2. sending a packet: the serialized call is forwarded through the network infrastructure using
the RPC runtime, which handles the data transfer between the client and the server;

3. reception on the server machine: the server module receives the packet, unpacks it and
interprets the procedure call;

4. execution of the procedure: the server performs the required procedure based on the
information received from the client;

5. returning the result: the result of the procedure is packaged by the server, transmitted
back to the client through the server module;

6. processing the result on the client machine: the client module unpacks the received result
and passes it to the client program.

Yu. Korchak, B. Mikh, Yu. Furgala 87
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

) R —
1
f Ll
1 1
1

RPCexecution RPCexecution

HostClient HostServer
Client E : Server 3
g 7 E . implementation A i
|Reisult Call-up | N i |Call-up——» Result | !
Transformer \ ' H Transformer E
f | U ™ : : r .u T] ‘ :
Unpacking Packaging | ' 'Unpacking Packaging|
LA)] J

environment environment

]

r | expectation l 7 : :/ Y
[Receivings-Sending ! ' | Receiving Sending | |
\ i J! RS A J
_7‘ . ! ;
i ' i
: : :
' /’

‘merrderssrerresrofacsar ! Call packet ‘usssdresssssssssssheaas

Resulting package

Fig. 2. Diagram of client-server interaction using the RPC protocol.

This process illustrates how RPC enables remote execution of functions between computers
on a network, minimizing the complexity of communications for the user. It is important to note
that all messages occur either in binary or hexadecimal code, which allows both to increase the
speed of the application itself and to reduce the load on the server.

Today, another modification, or rather an addition, of this ConnectRPC (cRPC) protocol
has already been created, which is a hybrid protocol designed to optimize the interaction between
components of distributed systems that use modern and traditional web technologies [13]. This
protocol integrates the capabilities of HTTP/1.1 and HTTP/2, providing efficient solutions for
managing multiplexed requests and responses, and supporting streaming data. The main
properties of cRPC: support for HTTP/2, compatibility with HTTP/1.1, ease of use (Fig. 3).

Fig. 3 shows a request processing scheme in the context of the cRPC protocol [13], which
depicts the duality of supporting REST API and RPC calls.

The universal tool Protocol Buffers (protobuf), created by Google [14], is used for data
serialization. This tool allows you to convert structured data into a compact binary format that is
ideal for fast data exchange between different applications and systems. In contrast to XML or
JSON formats, protobuf provides greater efficiency in storing and transferring large amounts of
data, which is especially useful in high-load environments where speed and resource efficiency
are critical factors. Advantages of protobuf include efficiency (due to serialization to binary or
hexadecimal code), portability, and flexibility.

88 Yu. Korchak, B. Mikh, Yu. Furgala
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

API Client

’ POST t/user/123/profi

{"email": “foo@example.com", ...

(L1 dLLH) IdV I LS3Y

Fig. 3. Scheme of processing requests in the context of the ConnectRPC protocol.

A typical .proto file defines data structures to be serialized and deserialized using Protocol
Buffers. The Protocol Buffers Compiler (protoc) tool converts definitions in .proto files into
source code of a specific programming language. To generate code in the case of the Go
programming language, the following command must be executed:

protoc --go_out=. --go_opt=paths=source_relative user.proto

When the protoc command is executed, it reads the data structures defined in the .proto file.
It generates the appropriate classes and methods for the programming language, including
methods to serialize serializeToString() and deserialize ParseFromString() objects of those
classes. In the case of generation, language segments of the selected programming language are
formed depending on the libraries.

The serialization process in Protocol Buffers involves converting structured data into a
binary format that allows for efficient storage or transfer of that data between different systems
or components. Serialized data includes information about field types, their values, and data
structure (Fig. 4).

To justify the choice of frameworks based on RPC, we will first compare gRPC and REST
according to such criteria as architectural approaches, efficiency and breadth of application in
distributed systems [16, 17]. Both methods have advantages and disadvantages, depending on
the application’s specific needs. Architecturally, REST is significantly overloaded with headers,
and its queries can be used to interact with web services that accept data in JSON format for
processing or storage. In contrast, gRPC demonstrates a two-way interaction, where the client
initiates a request and the server responds. Both use specified methods in their mutual interface.

Yu. Korchak, B. Mikh, Yu. Furgala 89
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

Using gRPC allows this interaction to be fast, secure, and efficient by compressing data and
using HTTP/2 for transport. In this case, communication through procedure calls is more concise,
less expensive, and abstracted from the meta-information that REST entails. The comparative
characteristics of both methods of data transmission are presented in Table 1.

Protocol Buffers

it i a r t | n
@a 06 4d 61 72 74 69 6e
10 b9 Qa

gt a a y a ! € a n 1 n g
la Ob 64 61 79 64 72 65 61 6d 69 6e 67

(K 1 n)

la 07 68 61 63 6b 69 6e 67

Fig. 4. An example of data serialization in RPC [15].

Because gRPC is implemented over the HTTP/2 transport, the protocol uses multiplexing
and data streaming, which are key technologies for reducing latency in modern network
protocols such as HTTP/2 used in virtual resource management systems and scalable web
applications. These mechanisms enable more efficient use of available network bandwidth,
reducing latency and server response time.

For the final selection of the framework for the development of the controller, a comparison
was made between the gRPC framework and the REST architecture in terms of performance
(response time and total throughput in the case of processing requests), scalability (the ability to
adapt to the increase in the number of requests and users without loss of performance), reliability
(the ability to withstand high loads and various failures, ensure stability of operation), resource
management (efficiency in the use of computing and network resources), compatibility and
flexibility (the ability to integrate with different programming languages and platforms easily).
Each of these parameters allows a deeper understanding of the advantages and limitations of
both protocols in various aspects of their application.

For each study, a specific scenario was chosen, which allows a deeper understanding of the
effectiveness of a particular protocol for various tasks. The request processing time estimation
model implements a separate program with the same architectural behavior, but under different
gRPC and REST protocols. Experiments comparing the performance of REST and gRPC were
conducted on a specially prepared virtual environment based on Docker. Each container was
configured with the following resources: single-core CPU, 1 GB RAM, 1 GB/s bandwidth. For
testing, a program in the Go programming language was used, which allows simulation of the
processing of requests under both protocols on the same hardware configuration for a correct
comparison. The number of requests for testing varied from 1 to 1000 in steps of 50 requests.

90

Yu. Korchak, B. Mikh, Yu. Furgala

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

Table 1. Comparative characteristics of REST and gRPC data transfer methods

Parameter

REST

gRPC

Communication
protocol

uses HTTP/1.1, which provides
versatility and easy integration
with web infrastructure, but is less
efficient due to header overload
and opening a new connection for
each request

uses HTTP/2, which supports
multiplexing of several requests
through one connection, which
reduces delays in communication
channels

Data format

JSON or the older SOAP (XML)
principle, which is a text-based
format and is easily readable by
humans, but may require more
traffic and data to convey specific
information

Protocol Buffers, a binary format
that is more efficient in terms of
size and serialization/deseriali-
zation speed

operates with CRUD concepts

allows calling remote procedures

directly, which is implemented

Call methods using standard HTTP methods throuah defined services and
(GET, POST, PUT, DELETE) gn - .
methods in .proto files
native support for streaming
Support for streamm_g _support is possible put requests and responses, which
. not built-in and may require | allows
streaming

additional implementation to work more efficiently with large

data streams

A pseudo-random number generator was used to generate the load, which provided
diversity in the choice of the number of requests, simulating real operating conditions:

> requests = np.arange(1, 1001, 50).

The model for estimating request processing time in REST and gRPC can be represented
as follows:

TREST = Tconn + Tsend + Tproc + Tresp;
TgRPC = Tsena + Tproc + Tresp'

where Teonn — connection time; Tsend — time to send data; Tproc — processing time on the server;
Tresp — time to receive a response. Initially, the estimation of the request processing time and the
influence of the number of requests on the response time to the request were considered (Fig. 5).

As seen from Fig. 5, the response time in the case of the REST API protocol increases
linearly with the number of requests. This suggests that with each additional request, the overall
response time of the system increases, which may be due to HTTP/1.1 limitations such as
simultaneous opening of new TCP connections and header overload. In contrast, the curve for
the gRPC platform, although it starts with similarly low response time values for a small number
of requests, shows a much slower rise in response time as the number of requests increases. This
fact indicates the higher performance and efficiency of gRPC, which is explained by the use of

Yu. Korchak, B. Mikh, Yu. Furgala 91
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

HTTP/2, which supports multiplexing of streams and more efficient data management at the
transport layer.

—— RESTAP|
0.5 {—9rPC

0.4

0.3 1

0.2 1

response time, sec

0.1 1

the number of communication channels

100 200 300 400 500
the number of simultaneous requests

0 260 400 600 800

the number of simultaneous requests

Fig. 5. Dependence of the response time on the number of requests. The inset shows the dependence of
the number of used communication channels on the number of simultaneous requests. Both figures show
the graphs for the REST API in red and for gRPC they are in green.

The traditional limitations of HTTP/1.1, where each request requires a separate connection,
lead to delays with large numbers of concurrent requests. At the same time, gRPC allows
multiple requests to be processed simultaneously on the same connection and reduces delays in
request processing. As a result, the response time is significantly reduced compared to HTTP/1.1,
especially with a large number of requests. This fact is well reflected in the inset of Fig. 7, which
shows a linear growth of the number of used channels in sync with the increase in the number of
requests for the REST API and the absence of such growth for gRPC.

Next, we will consider the results of research on the change in throughput (the number of
processed requests per second) depending on the number of simultaneous requests for both
protocols (Fig. 6). As can be seen from Fig. 6, for the REST API, there is a sharp decrease in
bandwidth due to the increase in the number of requests. Initially, the curve has high throughput,
but drops off quickly as the number of requests increases, indicating that REST becomes
significantly less efficient under heavy loads. This may be due to limitations of HTTP/1.1, which
do not allow large numbers of concurrent connections to be efficiently scaled over individual
TCP connections for each request. In contrast, gRPC shows much better throughput even with
increasing number of requests. This demonstrates the high efficiency of gRPC, which uses
HTTP/2 to multiplex multiple requests in a single connection, as noted above. This approach
allows gRPC to maintain high performance and reduce overall latency, providing more stability
when processing a large number of requests.

92 Yu. Korchak, B. Mikh, Yu. Furgala
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

100 — RESTAPI
— gRPC

8 80
2]
&
D
(3]
3
g 60
G
5
[40
3
c
5
2
& 20
3
o
£

0

0 200 400 600 800 1000

the number of simultaneous requests

Fig. 6. Dependence of throughput (number of requests per second) on the number of simultaneous
requests for REST API (red curve) and gRPC (green curve).

The graphs in Fig. 6 indicate significant differences in scalability and performance between
the REST API and gRPC. In particular, the REST API can face challenges in scaling, especially
in large distributed systems, where a large number of simultaneous requests can cause significant
delays. Instead, gRPC, using HTTP/2, provides much better connection management and lower
overall latency, making it an ideal choice for systems where fast response and high throughput
are important.

Next, we will consider such a characteristic as the probability of losing requests.
Throughput according to the Erlang formula [18] for determining the load is described by the
formula:

EC

__cl
B(E) =—S 5
Zk:OH

where E —request intensity, which estimates the average number of concurrently active requests,
and ¢ — the number of connection channels, where the numerator represents the probability that
exactly ¢ channels are engaged, and the denominator is the sum of the probabilities that any
number of channels from 0 to ¢ will be engaged.

Graphs in Fig. 7 show the probability of losing B requests according to Erlang's formula
for REST API and gRPC systems, which are simulated with different number of channels: 10
for REST and 50 for gRPC (with an equal number of channels, the difference is even more
significant). For REST APIs, the probability of losing requests increases rapidly with increasing

Yu. Korchak, B. Mikh, Yu. Furgala 93
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

load. For a system with 10 channels (servers), this indicates significant limitations in its ability
to handle high loads without losing requests. Almost all requests cannot be processed at high
load levels (around 100) due to insufficient resources. In contrast, gRPC exhibits a significantly
lower probability of losing requests at the same load level, due to the use of more channels. The
likelihood of missing requests increases much more slowly, indicating higher throughput and
more efficient resource management.

— RESTAPI (channels: 10)
—— gRPC (channels: 50)

0,8

0,6

0,4

0,2

the probability of losing query requests

0,0

0 20 40 60 80 100

Intensity of requests

Fig. 7. Request loss probability by Erlang formula for REST API (red curve) and gRPC (green curve).

Fig. 7 demonstrates the importance of architecture and technology choices to ensure high
availability and reliability in large-scale applications. gRPC, with its ability to use multiplexing
over HTTP/2, provides better performance and a lower chance of losing requests compared to
REST, which uses a more traditional single-channel approach with HTTP/1.1.

Therefore, the analysis of the results showed that gRPC provides more stable and
significantly higher performance in the case of increased number of requests, due to the
efficiency of HTTP/2, which supports multiplexing. At the same time, the REST API using
HTTP/1.1 showed an increase in response time as the number of requests increased. In the case
of scaling, REST may require additional resources to scale under a high number of requests,
which may include extra costs to optimize server hardware and infrastructure. The choice
between REST and gRPC depends on the specific application requirements. If performance with
a large number of concurrent requests is critical, gRPC may be a better choice. REST may be
more suitable for less dynamic or standardized web interfaces where simplicity of
implementation and a wide range of client support are required.

Since the comparative analysis of the gRPC and REST protocols revealed significant
advantages of the gRPC technology, it determined the choice of the RPC-based framework for
developing the controller and the main Golang (Go) programming language. Go includes strong

94 Yu. Korchak, B. Mikh, Yu. Furgala
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

typing and automatic memory management, which reduces the risk of common programming
errors such as buffer overflows and memory leaks. Built-in tools like the race detector help detect
race conditions, which is critical for multi-threaded applications typical of gRPC. The
combination of simplicity, performance, built-in concurrency and the availability of a wide
selection of typical standard library tools make Go an ideal language for developing RPC
systems. These aspects allow Go to provide technical efficiency and reduce the overall
complexity of projects, contributing to the rapid deployment of reliable and scalable solutions in
modern distributed systems [19].

In the context of developing a modern distributed system, the importance of choosing the
right technology stack cannot be overstated. Productivity, scalability, support of modern
standards, and future flexibility are the main criteria for determining optimal technological
solutions. Taking these aspects into account and conducting a comparative analysis of
technologies made it possible to choose a combination of RPC, cRPC, HTTP/2 and Go
technologies with a protobuff serializer for the implementation of the given task, which meets
all modern requirements for speed, efficiency and scalability of a distributed system. This
approach provides an optimal solution for ensuring stability, speed and reliability in managing
large-scale real-time applications.

Selected technologies are integrated to create a single system:

1. RPC and ConnectRPC provide reliable communication between system components,
simplifying integration and scaling;

2. Golang is used to develop the main components of the system, ensuring high
performance;

3. Protocol Buffers provide fast and efficient data serialization for transmission between
system components.

As part of this work, a minimum viable product (MVP) was developed for a software
controller that would manage runner resources. The MVP’s main purpose is to validate the
controller’s key functions and check its integration with the existing CI/CD system (Github
Actions).

Development of a functional MVP controller for managing runner resources

Let's first consider the architecture of the designed controller. The primary goal in designing
the controller architecture is to create a framework that supports runners’ core resource
management functions while allowing for easy future scalability. The architecture should be
modular, allowing new components to be added without rewriting existing code. In general, it
should ensure high management efficiency and the ability to adapt to changes in requirements
or volume of work quickly. It is also important to consider ensuring proper security and
reliability when integrating with other CI/CD systems.

Fig. 8 shows the abstract architecture of the controller's interaction with the runners and
describes the mechanisms of processing and managing runner resources.

The main functions of the controller include:

1. processing requests from new runners - the controller accepts initialization requests from
runners for their registration in the system;

2. registration of runners in groups - effective distribution of runners in working groups
based on their characteristics and tasks;

3. authentication of runners — checking the authenticity of runners before adding them to
the pool to ensure security;

Yu. Korchak, B. Mikh, Yu. Furgala 95
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

4. protection of connections through SSL - use of Secure Sockets Layer (SSL) to encrypt
data transmitted between the controller and runners, ensuring confidentiality and protection
against potential attacks;

5. event logging — recording of all runner connection operations for audit and monitoring
of activity in the system.

GitHub

Jia
¢ i3
Bl
g 1§
=4 !
&R
P2
v
\
: Controller .
! i
;
TATRN %
X \ Zn
X7 . N N\
8 \ e

e

T \ Mac

/
=8 58
““ °

e o o) |
Tatvm TR AR Tet

Tt VA Tet VA |
el i Arm—

\ &
A - - S
Mac ‘ | Mac |

|

= - |
s . g Lo
S o]
S = 9)
| Tt va Ter VA Tat VR Tt A

Fig. 8. Abstract architecture of controller interaction with runners.

Integrating the MVP with existing CI/CD systems, such as GHA in particular, is a critical
development component. The main goal of integration is to ensure MVVP compatibility with a
wide range of operations and services already in use in the CI/CD system.

For testing, the MVP involves the use of a variety of methods to verify functionality (the
application performs all declared functions), performance (system response time, request
processing and performance under load) and product security (vulnerability and potential threats,
penetration tests and security audits). An important aspect of development is integration testing,
which allows you to make sure that MVP components interact correctly with both internal and
external systems. Using automated tools and developing test scenarios will enable to identify
problems at the early stages of integration.

Mock services can be used to simulate external interfaces and APIs, allowing integration
testing without the need for a real environment. This provides more testing flexibility and helps
avoid possible risks for actual operational processes.

The main steps of the process include the development of test scenarios that reflect real
operational conditions and integration testing, which allows to evaluate the interaction between
the MVP and other system components. It is also important to carry out load testing to determine
the performance limits of the controller in the case of different load levels and to determine the
points of possible failures.

Within the framework of this investigation, a .proto file was developed that defines the
interfaces for the interaction between the controller and the runners through various RPC calls.

96 Yu. Korchak, B. Mikh, Yu. Furgala

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

The following key functions are implemented: RegisterRunnerRequest, StartJob, StopJob,
CheckRunnerStatus. In the future, their registration will be carried out through RPC.

Together, these services create a comprehensive interface for managing runners and their

tasks, ensuring efficient allocation of resources and tracking the status of execution in the system.

mac-runners-controller)[tail]
!
20:35:30Z" level=warning msg="Got a request for token for runner: PA4"
131Z, took: 1751ms, method:GET, uri:/api/ h_token, 200
arning msg=" for token for runner: PA4"
i /fetch_token, 200
token for runner: PA4"
etch_token, 200
token for runner: PA4"
/fetch_token, 200
token for runner: PA4"
etch_token, 200
n for runner: PA4"
api/vl/fetch_token, 200
request f token for runner: PA4"
ri:/api/vl/fetch_token, 200
token for runner: PA4"
/fetch_token, 0
request for token for runner: PA4"
api/v1/ token, 200
for token for runner:
i/vl/fetch_token, 200

2
t
2
£
2
tim
2
t
2
€

NN NN N

<namespace> <logs>

Fig. 9. Screenshot of the console with displayed logs.

Also, because the cRPC framework also implements message delivery through the
standard REST interface, it becomes possible to use the controller in two modes by implementing
the same procedures, but through REST. Call logging is presented in Fig. 9.

Code | Blame 171 lines (146 loc) - 6.19 KB - @

permissions:

18 id-token: write # This is required for requesting the JWT
19 contents: read # This is required for actions/checkout
20 packages: write # This is required for uploading artifacts
21

22 bobﬁ

23 prepare:

24 runs-on: “"mac-builder"

25 outputs:

26 CHANGED_DIRS: ${{ steps.identify.outputs.CHANGED_DIRS }}
27 steps:

28 - name: Checkout repository

29 uses: actions/checkout@v3

30 with:

31 fetch-depth: 2

32

33 - name: Identify changed dir

id: identify
Fig. 10. Listing of job workflow instructions.

To test the functionality of tasks (jobs), a job workflow was created on GHA, the
instructions of which are shown in Fig. 10. It allows you to deploy and test runners using a

Yu. Korchak, B. Mikh, Yu. Furgala
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

97

controller. This workflow provides automatic configuration and launch of runners, checking their

integration and performance in real conditions.

This workflow configures the testing environment. In particular, it uses the mac-builder
runner, for which the controller automatically deploys the necessary resources and executes test
tasks, checking them for correctness and efficiency.

« Packer Workflow

@ Update.hcl #199

| @ summary

Jobs
@ prepare
© build (build/project-live)

@ group_artifacts

@ deliver_to_s3 (sonoma-latest-p...

@ deliver_to_registry (sonoma-fat...

@ clear_local_cache

Run details
@ Usage
&3 Workflow file

Triggered vi

a push 2 weeks ago

@ bmikh-project pushed -o- 2389701 main

build.yml
on:push

© prepare oo ©tiscomoleted

Re-run all jobs

Status Total duration Artifacts

Success 48m 28s 1

 © clexocal_cacha

Fig. 11. Screenshot from GHA of the result of a successfully executed job task from the controller.

After testing, it can be seen (see Fig. 11) that the integration with GHA works and the
tasks are performed successfully. This confirms that the controller interacts correctly with the
runners in the GHA environment.

1IB0e=S0va @80 "0820 ol

Fig. 12. Displaying the virtual machine window.

98 Yu. Korchak, B. Mikh, Yu. Furgala
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

Fig. 12 shows a macOS virtual machine [20] where the runner has been successfully
launched. This demonstrates that the runner, controlled via RPC commands from the controller,
executes tasks in the macOS environment. The environment reflects the macOS user interface.

Thus, a prototype of the runner controller based on RPC technologies has been developed,
which confirms the high efficiency of using RPC for interaction between the controller and
virtual environments. This, in turn, demonstrates how RPC can serve as a reliable interface for
managing resources in virtual environments, providing convenience and efficiency in integration
with CI/CD systems. It is worth noting that the considered development provides several
opportunities but has certain disadvantages.

Among the possibilities, the following can be distinguished:

- high performance and security thanks to the introduction of such advanced technologies
as Connect RPC and OpenSSL;

- flexibility and scalability, which allows you to adapt the system to various production
requirements and conditions effectively;

- expanding the potential of using the system in various environments thanks to integration
with modern services and platforms;

- adaptability to any system, subject to additional development of the adapter or imitation
of the RPC interface.

Disadvantages include:

- management and configuration of the system may require a high level of technical
knowledge, which places specific requirements on the qualifications of administrators;

- the need to develop a specialized interface for interaction with virtual platforms, which
can complicate integration with various execution environments;

- some virtual environments require additional development of an adapter for the possibility
of working with the RPC protocol;

- clear continuous contact with the runner via the Internet is necessary.

The developed controller, created as a minimum viable product (MVP), has significant
potential for development and improvement. Possible areas of improvement include optimizing
and refactoring of the code, expanding functionality, scalability and integration, increasing the
level of security (for example, using advanced encryption technologies and mutual Transport
Layer Security (TLS) connection), etc.

Conclusions

Within the framework of the given investigation, a functional model of the controller was
developed and an analysis of potential technologies for its implementation was carried out. In
particular, a comparative analysis under the conditions of a typical load of RPC and REST API
showed that the most effective solution for implementing the controller itself is the cRPC
framework, which opens up opportunities to use different virtual environments through the
implementation of interfaces or an adapter for RPC. This controller aims to improve resource
efficiency and reduce response time, especially under high load conditions, by using modern
RPC protocols.

The development opens wide prospects for further improvement and optimization,
providing opportunities for integration with other platforms and services, such as GitHub
Actions, which can significantly improve CI/CD processes. Scaling and expanding the
controller’s functionality can increase productivity and efficiency in processing tasks in real-
time. These perspectives highlight the project’s potential not only as a tool for automation and

Yu. Korchak, B. Mikh, Yu. Furgala 99
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

resource management, but also as a platform capable of rapid adaptation and expansion in the
future, ensuring sustainability and efficiency at a high level.

In general, the implemented development is relevant and promising. It has great potential
to become an important tool for organizations that seek to optimize the management of their
virtual resources and improve development processes. Thanks to the application of modern
technologies and approaches, it provides power and flexibility, making the system a valuable
asset for any IT structure.

REFERENCES

[1] Value and benefits of DevOps in IT companies [Electronic resource]. — Mode of access:
https://onecloudplanet.com/blog/article/value-and-benefits-of-devops-in-it-companies (in

Ukrainian)
[2] Improving product efficiency through continuous integration and continuous delivery
(Cl/ICD) [Electronic resource]. - Mode of access:

https://www.londonproduct.academy/post/pidvishchennya-rivnya-efektivnosti-produktu-
za-dopomogoyu-neperervnoyi-integraciyi-ta-neperervnoyi-dostavki-ci-cd (in Ukrainian)
[3] 10 reasons why CI/CD is important for DevOps [Electronic resource]. — Mode of access:
https://cloudfresh.com/ua/cloud-blog/10-prichin-chomu-ci-cd-vazhlivi-dlya-devops/
(in Ukrainian)
[4] What is server virtualization and why is it useful? [Electronic resource]. — Mode of access:
https://hyperhost.ua/info/uk/shho-take-virtualizaciya-serveriv-i-comu-vona-korisna
(in Ukrainian)
[5] Fowler M. Continuous Integration [Electronic resource]. — Mode of access:
https://martinfowler.com/articles/continuousintegration.html

[6] Wolff E. A Practical Guide to Continuous Delivery / E. Wolff. — Addison-Wesley
Professional, 2017. — 288 p.

[7]1 Phillips A. The Continuous Delivery Pipeline — What it is and Why it’s so Important in

Developing Software [Electronic resource]. — Mode of access:
https://devops.com/continuous-delivery-pipeline/
[8] About GitHub Actions Runners [Electronic resource]. — Mode of access:

https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-
runners/about-github-hosted-runners

[9] GitHub Actions Documentation [Electronic resource]l. — Mode of access:
https://docs.github.com/en/actions

[10] Nelson B. J. Remote Procedure Call (PhD thesis) / B. J. Nelson. — Xerox Palo Alto Research
Center, 1981. — 220 p.

[11] Introducing gRPC, a new open-source HTTP/2 RPC Framework [Electronic resource]. —
Mode of access: https://developers.googleblog.com/en/introducing-grpc-a-new-open-
source-http2-rpc-framework/

[12] gRPC Documentation [Electronic resource]. — Mode of access: https://grpc.io/docs/

[13] Connect RPC Documentation [Electronic resource]. — Mode of access:
https://connectrpc.com/docs/go/interceptors

https://onecloudplanet.com/blog/article/value-and-benefits-of-devops-in-it-companies
https://www.londonproduct.academy/post/pidvishchennya-rivnya-efektivnosti-produktu-za-dopomogoyu-neperervnoyi-integraciyi-ta-neperervnoyi-dostavki-ci-cd
https://www.londonproduct.academy/post/pidvishchennya-rivnya-efektivnosti-produktu-za-dopomogoyu-neperervnoyi-integraciyi-ta-neperervnoyi-dostavki-ci-cd
https://cloudfresh.com/ua/cloud-blog/10-prichin-chomu-ci-cd-vazhlivi-dlya-devops/
https://hyperhost.ua/info/uk/shho-take-virtualizaciya-serveriv-i-comu-vona-korisna
https://martinfowler.com/articles/continuousIntegration.html
https://devops.com/continuous-delivery-pipeline/
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions
https://developers.googleblog.com/en/introducing-grpc-a-new-open-source-http2-rpc-framework/
https://developers.googleblog.com/en/introducing-grpc-a-new-open-source-http2-rpc-framework/
https://grpc.io/docs/
https://connectrpc.com/docs/go/interceptors

100 Yu. Korchak, B. Mikh, Yu. Furgala
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

[14] protocolbuffers/protobuf [Electronic resource]. - Mode of access:
https://github.com/protocolbuffers/protobuf

[15] Schema evolution in Avro, Protocol Buffers and Thrift [Electronic resource]. — Mode of
access: https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-
buffers-thrift.html

[16] Bolanowski M. Efficiency of REST and gRPC realizing communication tasks in
microservice-based ecosystems / M. Bolanowski, K. Zak, A. Paszkiewicz, M. Ganzha, M.
Paprzycki, P. Sowinski, I. Lacalle, and C. E. Palau. — arXiv preprint arXiv:2208.00682,
2022.-12 p.

[17] GRPC Vs REST API Communication [Electronic resource]. — Mode of access:
https://www.wallarm.com/cloud-native-products-101/grpc-vs-rest-api-communication

[18] Allen A. O. Probability, Statistics, and Queueing Theory with Computer Science
Applications / Arnold O. Allen. — Academic Press, 1978. — 406 p.

[19] The Go programming language: perspectives, pros and cons [Electronic resource]. — Mode
of access: https://senior.ua/articles/mova-programuvannya-go-perspektivi-plyusi-ta-mnusi
(in Ukrainian)

[20] MacOS Virtualization Framework [Electronic resource]. — Mode of access:
https://developer.apple.com/documentation/virtualization

PO3POBKA ITPOI'PAMHOI'O KOHTPOJIEPA JJI51 ABTOMATHU30BAHOI'O
CTBOPEHHA TA KEPYBAHHA BIPTYAJIbBHUMU PECYPCAMU PAHHEPIB

IO. Kopuak, b. Mix, 0. ®ypraaa
Jlveiecokutl Hayionanvuull yHieepcumem imeni leana Opanka,

eyn. I'en. Tapnascvroco, 107, 79017 Jlveis, Ykpaina
yuriy.korchak@Inu.edu.ua

VYV poGoTi po3pobiieHo (GYHKIIOHATBHY MOJENb (IPOTOTHII) KOHTpOJiEpa SIK MiHIMaJIbHO
xutre3aaTHuil npoaykt (MVP) st aBTOMaTH30BaHOTO CTBOPEHHS Ta KEPYBaHHS BipTyalbHHMH
00YHCITIOBATBHUMHE PECYpPCaMH paHHEPIB.

[NopiBHsTBPHAN aHaNi3 32 YMOBM THIIOBOTO HaBaHTakeHHs mpotokoiiB RPC ta REST API
[I0A0 MPOXYKTUBHOCTI, MacIITa0OBAaHOCTI, HAAIHHOCTI, KEPYBaHHAM pecypcaMi, CyMiCHOCTI Ta
THYYKOCTI IIOKa3aB, MI0 HAaWOUIBII €QEKTHBHUM pIMICHHAM 3317 IMIDIEMEHTaIlii caMoro
KoHTpoJepa € ¢peiimBopk Ha 6a3i RPC, a came CRPC. EkcrnepuMmeHTanpHO JOBEIEHO, IO
nporokon RPC mMoxe cinyryBatu HamiiiHUM iHTepgelcoM Ui KepyBaHHS pecypcamMH Y
BIpTyaJIbHHX CEpeIOBHIIAX, 3a0€3Meuy0un 3pYYHICTh Ta €heKTUBHICTh B iHTErpalii 3 cHCTeMaMHu
CI/CD. IlpoBeneHuii aHasi3 iHIIUX MOTEHIIIMHUX TEXHOJIOTIN AJIs TOCSATHEHHSI TIOCTABJICHOT METH
3yMOBHB 00paTu KoMOiHaIito MoBH porpamyBanus Golang ta cepiaizaropa Protocol Buffers, sika
BIJNIOBia€ BCIM Cy4YacHMM BHMOTaM [0 IIBHAKOCTi, €(QEKTUBHOCTI Ta MacmTaboOBaHOCTI
PO3MOAiNIeHOT CHCTEMH.

VY pamkax mi€ei po3poOku cTBOpeHo (aiin .proto, IKHH BU3Havae iHTepdeiich a1 B3aeMoIii Mixk
KOHTPOJIEPOM Ta paHHepaMu uepe3 pi3Hi Bukiuku RPC. BukopucraHHS TECTOBHX ClieHapiiB
JI03BOJIHIIO BiIOOpa)kaTH peasbHi OlepaliiiHi yMOBH Ta iHTerpaliiiHe TeCTyBaHHS i, IK pe3ysbTaT,
OLIHUTH B3aeMOAil0 MK MVP Ta iHIIMMH KOMIOHEHTaMH cHCTeMH. I[IpoBeneHe TecTyBaHHS

https://github.com/protocolbuffers/protobuf
https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
https://www.wallarm.com/cloud-native-products-101/grpc-vs-rest-api-communication
https://senior.ua/articles/mova-programuvannya-go-perspektivi-plyusi-ta-mnusi
https://developer.apple.com/documentation/virtualization
mailto:yuriy.korchak@lnu.edu.

Yu. Korchak, B. Mikh, Yu. Furgala 101
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

3acBiAUmIO, o iHTerpaiis 3 GitHub Actions mpairroe i 3aBaHHs OJIO i IBUIICHHS ¢()eKTHBHOCTI
BUKOPHCTAHHS PeCypCiB 1 3HIKEHHS 4acy BIATYKY, OCOOJIMBO B YMOBaX BHCOKHX HaBaHTaXXCHb,
BUKOHYIOTBCS YCHIIIHO.

Po3poOka BigkpuBae MIMPOKI MEPCIIEKTUBU IS TOJAIBIIOTO BIOCKOHAIEHHS Ta ONTHUMI3allii,
HaJal04Y MOXJIMBOCTI [UIsl iHTerpalii 3 iHmuMy mwiatpopMaMu Ta cepBicamu, TakuMu sik GitHub
Actions, mo Moxe cyrreBo mnokpauutd mpouecu CI/CD. MaciutabyBaHHs 1 PO3LIMPEHHS
(YHKIIOHAIBHOCTI KOHTpOJepa MOXYTh 3a0e3leunTH 30UTbIICHHS HPOIYKTHBHOCTI Ta
e(eKTUBHOCTI 00pOOKH 3aBHaHb y peasbHOMY 4aci. L{i mepcrexkTHBy MmigKpecooTh HOTeHIia
PO3pOOKM HE TUIBKH SIK IHCTPYMEHTY JUIL aBTOMAaTm3amlii Ta KepyBaHHS pecypcaMmy, aje i sk
riaTopMy, 37aTHOI 1O IIBUIKOI ajanTamii Ta pO3MMPEHHS B MaHOyTHHOMY, 3a0e3MedyrouH
CTIMKICTh 1 €()EeKTHBHICTh HA BUCOKOMY PiBHI.

Knrouosi crosa. mapagurmMa HeTepepBHOI iHTerpaiii, mapagurMa HENEepepBHOI JOCTABKH,
MPOTOKON BifganeHoro Bukiuky mpoueaypu, JRPC, cRPC, nportokon obminy nanumu HTTP/2,
MoBa miporpamyBanHs Golang, cepemosuine GitHub Actions, paHHep, KOHTpOJEp, MiHIMAIBHO
KUTTE3TATHUN IPOJIYKT.

The article was received by the editorial office on 30.07.2024.
Accepted for publication on 27.08.2024.

