ISSN 2224-087X. Enexrponika Ta iHpopmaniiini TexHosorii. 2024. Bumyck 27. C. 59-71
Electronics and information technologies. 2024. Issue 27. P. 59-71

YK 004.4 DOI: https://doi.org/10.30970/eli.27.5

SOFTWARE RISK TAXONOMY CREATION BASED ON
THE COMPREHENSIVE DEVELOPMENT PROCESSES

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

System Design Department,
lvan Franko National University of Lviv,
50 Drahomanova St., 79005 Lviv, Ukraine

mariia.liashkevych@Inu.edu.ua

Software risks are always a crucially important topic for research because the software
development process is quite expensive. The competition is high enough to ignore it. Although the
"golden" era for startup projects is slowly ending, the latest achievements in generative Al show
that now is the time to "take risks" and capture the software market using this technology. Therefore,
it is necessary to analyse already known risks and identify new risks associated with business
models and market conditions with generative Al capacity.

The article analyses the already existing taxonomies of software risks, their advantages and
disadvantages, the software development life cycle stages, and risk management activities in the
conditions of different software development models. Using the proposed taxonomy, the noticed
activities and processes are linked in one taxonomy, which allows easy identification of risks based
on known software requirements and vice versa.

The created taxonomy has been validated by some subject domain experts who work at big IT
companies. ChatGPT4 is one of the experts counting on the LLM capability to resolve the
summarisation and text classification tasks. The practical results of the risk taxonomy are crucially
important because we avoid LLM hallucinations and enable a taxonomy-driven approach to prompt
engineering for risk management.

Keywords: software development risks, risk taxonomy, risk recognition, risk detection,
taxonomy, software requirements, requirement analysis.

Introduction. Understanding the software requirements and knowledge of the software
development process play a key role in studying and using a huge volume of information for
software risk recognition. This information explains the risks nature. As common, risk is defined
as the denial of one or more objectives or the loss of the achievement of some relevant objectives.
Risks always blur targets, and certain goals can be risky. [1-5]

In developing an effective risk management model (RMM)), it is important to consider risks
from all technical and non-technical aspects of development. It is well-known that Software
Development Live Cycle (SDLC) is almost standardised and has some predefined stages. We
can face different namings in the literature for those stages but let’s follow the namings from [1].
The suggested structure of 7 predefined SDLC stages [1] defines the order of software
development processes and related activities including risk management.

Generally, the SDLC stages are the same for different Software Development Models
(SDM) because they are development milestones and represent a logical sequence of the

© Lyashkevych M., Rohatskyi I., Lyashkevych V., Shuvar R. 2024

https://doi.org/10.30970/eli.27.5
mailto:mariia.liashkevych@lnu.edu.ua

60 M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

executed tasks. As was shown in [1-4], there are a lot of different SDMs: Waterfall, Agile,
Extreme Programming, Lean, Prototyping Methodology, Rational Unified Process, Dynamic
Systems, Feature-Driven Development, Spiral Model, Joint Application, Scrum and Rapid
Application. Each provided SDM is a good choice for some reasons and conditions. The authors
in [1] did a good investigation and described these methodologies with explanations, advantages
and disadvantages.

Indeed, each SDM predefines some risk management processes for different SDLC stages.
The main goal of risk management is to identify and control all possible risks before they occur
during software development. [5] Therefore, various types of risks can be detected at almost
every stage. The comprehensive risk model helps manage risks throughout the project, increasing
the likelihood of successful delivery. Developing a comprehensive risk model to manage
software development project risks, we should revise and refine them iteratively if new risks
appear. [5]

In [6] authors came out from a prioritised list of top ten software risk items and considered
them through RMMI using unique features of a proposed audit component. The proposed
software RMM [6] has 5 phases: risk identification, risk measurement, risk assessment, risk
mitigation and contingency plan. This model enriched the main phases of the Boehm RMM
together with a wider range of risk categories. They related the selected risk categories and the
corresponding factors by preparing a classifier. As the authors proved in [6], the proposed model
reduces the unforeseen risks or risks that have already occurred by creating a verifier core that
comprises risk managers and experts. The verifier core is dynamic as it can adapt to each phase,
and this makes the management process efficient and up-to-date.

The RMM s specifically tailored for software development projects [7] and has useful
relationships with the “Functional requirement analysis” step and the “Changing project plan”
and so far for “Establishing the scope of software development project”. The image illustrates a
RMM. This model integrates various decision points and processes to ensure comprehensive
management of risks throughout the SDLC. The provided solution in [7] has decision-making
attributes but doesn’t cover the entire SDLC and of course, we have no connection with SDM in
particular use cases.

Concurrently, throughout the project lifecycle, there is a continuous cycle of learning and
adjusting. Functional requirements are analyzed and refined, and lessons learned are integrated
into the project processes to enhance future decision-making and risk management. By the way,
this model [7] highlights a systematic and dynamic approach to risk management, ensuring that
risks are identified, analyzed, and mitigated effectively to support the successful completion of
software development projects which are pretty good targets for any risk management system.

A proposed method in [8] of modelling the risks of software development makes it possible
to assess different situations at the stages of SDLC, as well as to develop a strategy and tactics
for predicting, perceiving and overcoming the negative consequences of their manifestation. The
model determines the average value of the probability of potential risk events when developing
a suitable set of software that is useful for formulating classification rules of potential risk events
according to the probability of their occurrence. [8]

Technical issues directly related to system hardware and software, such as tool support,
development platform, the technical complexity of the project, specific device or hardware, and
performance characteristics of the product to be developed and deployed. Non-technical issues
relate to the organizational environment, project implementation, development process,
methodological and management issues. [9]

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar 61
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

The authors in [9] view goals as goals, expectations, and limitations of technical and non-
technical challenges and risk factors that prevent the achievement of those goals. Details of early
development components and project success factors are primary sources that facilitate the
understanding of construction fundamentals. These suggestions we considered as useful ones
and will rely on them in the future.

In [10], the authors present RMM to effectively address the risks that obstruct successful
project outcomes. The approach explicitly models the relations between the goals based on the
software development components and project success indicators with the risk factors that
obstruct these goals which is very interesting for us.

As common, we have five basic steps taken to manage risks in software development. [6,
10] These steps are referred to as the risk management process. It begins with identifying risks,
goes on to analyze risks, then the risk is prioritized, a solution is implemented, and finally, the
risk is monitored. Each SDM has predefined software risk management processes.

The authors in [11] follow the goal of finding out whether there is a specific SDM which
will be able to manage the predefined scope of risks. The research method used to accomplish
this task was a comparative study. A comparative study is a method used to compare two or more
ideas that have significant differences. [11] Separately, some authors have designed an error
taxonomy, which includes risk indication activities based on appeared errors. [12] Authors in
[13] have shown a relationship between risk management principles with SDMs.

The usage of indicators is effective in decision-making for risk management tasks. In fact,
despite the relevance of risk management in software projects, software development
organisations are commonly overlooked. One of the reasons for this fact is that the concept of
risk is abstract and subjective, and its management does not bring obvious immediate practical
results. [14] Thus, in this context, [14] aims to define and propose indicators that are specific to
the environments of software projects to support risk assessment activities - risk identification
and risk analysis. On par with risk identification and risk analysis, we still recognize treatment,
monitoring and mitigation activities as described before.

According to [15], the world experience of risk management proves that the principle of
applying a process approach has become the main principle of risk management modernization.
Following the process approach and approved global standards, to ensure the effectiveness of
the risk management system at enterprises, RMM is being built, which should include amidst
main components: risk identification, risk analysis, risk treatment, risk monitoring and risk
mitigation due to risk assessment values.

The context plays a crucially important role in the risk detection and management process
due to the opportunities of Large Language Models (LLM). The authors in [16] have shown the
applicability of risk recommendations for new projects based on the similarity analysis of
contextual stories. This study applies context history inference to project design and planning,
focusing on risk recommendations. Thus, with recommendations tailored to the characteristics
of each new project, the manager begins with a broader set of information for more assertive
project planning. [16] Using the situational approach, as was shown in [17], we can describe a
subject domain of risks in software development.

Emerging technologies and innovations including programming languages, frameworks,
and tools affect different risks at different SDLC stages. Of course, they bring new values and
benefits but there are risks due to unknown potentials and a lack of appropriate expertise. Poorly
formalised or frequently changing requirements increase risks, leading to budget overruns,

62 M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

delays, and time with resource constraints. Thus, from time to time, we should update the risk
management activities due to new requirements, new technologies in the market and so on.

After analysing the existing SDLC, SDMs and RMMs we notice that it is difficult to
recognise software development risks based on requirements for software in the initial stages
due to a huge variety of risks, a lack of information about innovative technologies and unclear
context for risk appearance. Finally, the existing RMMs don’t allow help to recognise the risks
from the project requirements description. Thus, we propose our RMM, taking into account the
benefits and shortcomings of the analysed models, which covers the software requirements,
SDLC stages, SDM processes, risk management steps and related context. The software
development risk taxonomy is being built on the proposed RMM.

Risk assessment for SDLC in conditions of different SDMs. From a software risk
perspective, at each SDLC stage, we consider the characteristics of software risk groups, their
indicators and their recognisability. It is a reason why we want to inspect each stage more deeply
due to risks appearance and so on. Therefore, we use the advantages and disadvantages of each
SDM in our analysis because we would like to improve the software development risk taxonomy.

The risk identification method is important place in a comprehensive risk management
approach to improve project success. It is based on the software development risk taxonomy,
which organises risks into a hierarchy of three levels: section, subsection, and group. The method
includes a taxonomy-based questionnaire (TBQ) which consists of questions for each taxonomic
group of risks designed to identify potential risks and issues affecting the software product.
Involving some software development experts, who work at big IT companies, we asked them
about the methodologies and risk levels at each stage of SDLC. We used the method of average
arithmetic ranks to agree with the opinions of experts but will pay more attention to this problem
in the next investigations. The gathered results are shown in Table 1.

Table 1. The results of the expert survey

Methodology/ Process | Ideation Analysis Design Development Testing Deployment | Maintenance
Dynamic Systems

Development Low Low Low Low Low Low Low
Scrum Development Low Low Low Medium Low Low Low
Extreme Programming [Medium Low Low Low Low Low Low
Agile Development Medium Low Low Medium Low Low Low
Spiral Development

Model Medium Low Low Medium Low Low Low
Joint Application

Development Medium Low Low Medium Low Low Low
Lean Development Low Low Medium Medium Medium Low Low
Rational Unified

Process Low Medium Medium Medium Medium Medium Medium
Feature-Driven

Development Medium Medium Medium Medium Medium Medium Medium
Prototyping

Methodology High Medium Medium High Medium Medium High
Waterfall Development | Low Medium High High High Medium Medium

Rapid Application
Development High Medium Medium High High Medium High

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar 63
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

The explanation of risk levels:

- Low Risk (green colour). The methodology is well-equipped and organised to handle

this stage with minimal potential risks.

- Medium Risk (yellowish colour). In this case, we expect certain troubles associated

with this stage of the methodology that require careful management.

- High Risk (reddish colour). This stage presents significant challenges and risks under

this methodology and requires extensive management and clarification.

According to our measuring (tabl. 1), we have a rough understanding of SDM and related
risks in each stage of SDLC. These results allow us to understand the challenges of the chosen
SDM at each stage of SDLC. Building the taxonomy of software development risks we will pay
attention to these results and identify risk groups for reddish and yellowish SDLC stages.

Thus, we will continue to define the risk attributes around them but, before we go ahead
with nested items of the taxonomy, we would like to formalise and create a software development
RMM where we can connect functional and non-functional software requirements with software
development processes and appropriate risks.

Then we tried to extend the number of risk attributes and risks themselves in the dataset but
we faced the multi-label problem when one attribute could be related to some risks with special
weight. Thus, we want to avoid this problem by general taxonomy because when we have
taxonomy, we can split the same meaning risks and their attributes between different SDM and
SDLC stages.

Risk indicators and related activities. Analysing the SDM process for risk handling we
came to the risk indication activities for SDM. These activities allow the recognition of semantic
relationships for each SDM at each SDLC stage. Under a risk indication activity, we understand
an action which helps identify, analyse, treat, monitor and mitigate the risk. Continuously
analysing the risk indication activities for other SDMs we gathered the most essential of them in
Table 2 which describes a general SDM to how each method applies to risk management at each
stage of the SDLC. This representation involves the common risk management steps:
identification, analysis, assessment/classification, treatment and monitoring/review at each stage
of the SDLC.

Generally, analysing the risk indication activities of risk management systems, we have
recognised some applicable risk management processes for all the SDMs. For example, they are
for two of the most popular SDMs: Waterfall Development and Agile Development.

The essential risk management processes in Waterfall Development:

- Creating comprehensive requirement documentation to reduce misunderstandings.

- Thorough reviewing to obtain formal approval before proceeding with requirements.

- Phase-wise testing to catch defects before moving to the next phase.

- Formalisation of the processes for managing changes and minimising risks.

- Perform detailed risk assessments before the end of each phase to have time for changes
in the next phase.

- Gather post-implementation reviews after project completion for future projects.

- Develop and maintain a contingency plan for critical path activities.

The essential risk management processes in Agile Development:
- Regular retrospectives reflect the risks of the current working methods.
- Facilitate daily meetings to address current risks and issues quickly.

64 M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27
- Thoroughly review sprint outcomes and adapt the backlog to mitigate risks.
- Automate testing and deployment to detect integration issues as early as possible.
- User story mapping to ensure understanding and alignment across the team.
Table 2. Risk indication activities
Methodology Ideation Requirement Architecture Development Testing Deployment Maintenance
| Stages Analysis Design
Waterfall Early risk Detailed risk Avrchitectural Code risks are treated through | Risk treatment | Deployment Ongoing risk
Development |identification and | analysis and risks are thorough planning. Integration | through risks monitored | monitoring and
assessment to avoid | evaluation in | identified and risks evaluated and plans for | systematic and reviewed maintenance
scope changes later | documentation | strategies formed | testing established testing strategies
Agile Continual risk Emphasis on Regular Continuous integration helps | Sprint-based Incremental Regular updates
Development | identification user stories to | refactoring to treat coding risks early. Daily |testing totreat |deploymentto |and retrospectives
through feedback identify and address design builds and integration to and review risks | mitigate risks for maintenance
loops analyse risks. | risks manage integration risks risks

Extreme
Programming

Risks identified
through fast
iterations

Close customer
collaboration
for risk
analysis

Simple design
principles to
reduce design
risks

Pair programming and test-
driven development to treat
coding risks. Continuous
integration and shared
codebases reduce risks

Emphasis on
customer tests to
evaluate risks

Small releases to
manage
deployment
risks

Iterative
improvements
and constant
feedback loops

Lean
Development

Risk identification
aligned with value

Lean analytics
to evaluate

Design risks are
managed by

Emphasis on automation and
standardization for coding.

Built-in testing
to continuously

Lean approaches
to streamline

Kaizen
(continuous

stream mapping requirement removing waste | Just-in-time integration to evaluate risks deployment improvement) for
risks and inefficiency | minimize risks maintenance
Prototyping | Prototyping to Risk analysis | Design risks Coding in stages, with risks Prototype Early and Feedback
Methodology | quickly identify through identified and identified in prototype testing to frequent incorporated into
feasibility risks iterative treated with each | reviews. Integration handled | evaluate risks deployment of [ongoing
feedback on prototype iteratively to manage risks continuously prototypes maintenance
prototypes iteration
Rational Risks identified Requirements | Architectural The implementation phase Testing phases | The transition Support and
Unified during the inception | elaborated with | baseline to focuses on managing coding | specifically phase handles maintenance are
Process phase risk address design risks. Integration assessed at | aimed at risk deployment planned and risk-
considerations | risks each iteration treatment risks aware
Dynamic Feasibility studies | Iterative Design risks Repeated prototyping helps Demonstrators | Deployment Continuous user
Systems to identify initial workshops to | managed through | treat coding risks. Frequent and prototypes | reviewed involvement
Development | risks analyze continuous user | integration sessions to manage | used to test and | through user helps monitor
requirement feedback integration risks adjust feedback maintenance risks
risks
Feature- Initial risk Feature list Design by feature | Coding by feature, focusing | Feature-based Features Ongoing feature
Driven assessment during | helps analyze | to address design- | on risk mitigation per feature. [testing to deployed enhancement to
Development |overall model requirement specific risks Regular builds to manage evaluate risks incrementally to |address
creation risks integration risks manage risks maintenance risks
Spiral Objective setting Progressive Prototyping and | Development and testing to Detailed risk Systematic risk | Regular risk
Development |includes risk risk analysis simulations to manage coding risks. Risk- evaluations management for | reassessment for
Model determination and address design driven integration process during test deployment maintenance
requirement risks phases
refinement
Joint Risks identified in | Requirement Design sessions | Coding in collaborative Testing involves | Deployment Continuous
Application | collaborative workshops to | help identify environments to treat risks. all stakeholders | planned with feedback loops
Development | sessions analyze and design risks early | Integration tested in joint to review risks | stakeholder for maintenance
evaluate risks sessions input to risks
minimize risks
Scrum Sprint planning Backlog Design risks Coding in sprints with Sprint-based Deployment Sprint
Development |includes risk grooming managed during | continuous reviews for risks. | testing phases risks are retrospectives to
identification sessions to sprints Integration risks handled for risk managed at the | monitor
analyze risks during sprint reviews evaluation end of sprints. | maintenance risks

Rapid
Application
Development

The initial phase
includes risk
identification for
the scope

Workshops and
prototyping to
analyze
requirements
risks

Iterative design
and feedback
loops to manage
design risks

Timeboxing coding phases to
quickly address risks.
Integration is conducted in
stages to evaluate risks

Testing phases
focus on treating
identified risks

Staged
deployment to
mitigate
deployment
risks

Ongoing
iterations for
maintenance with
risk reviews

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar 65
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

Stakeholders, architects, experts and others are proactive participants in risk management
discussions. They define the problem statement for the business problem at the first SDLC stage
named “Project initiation and planning”. At this stage, we create an initial solution which is a
matter for discussion at the “Architectural Design” and “Requirement analysis” SDLC stages.
After, we try to identify the risks as early as possible even when we have an initial solution. The
relationships between the 7 stages of SDLC and the 5 steps of risk management processes are
shown in Figure 1.

[Emerging technologies and innovations] [Team and management External factors]
[Busi goals with stackeholders, architects, etc.]1—

, \ . N 7 y \ " \ \
SDLC-stage-1: Project | SDLC-stage-2: SDLC-stage-3: SDLC-stage-~4: SDLC-stage-5: ‘ SDLC-stage-6: \ ‘ SDLC-stage-7;
X rl I e g |t S resti Depl P Malioaance aid i
initiation and planning | | Requirement analysis Architectural design Development Testing | ¥ [| and op

{ \)\) 8) \))

| J

A

Risk mitigation plan

RM-step-1: RM-step-2: RM-step-3: RM-step-4:
Risk identification > Risk analysis > Risk treatment > Risk monitoring
RM-step-5: Risk mitigation -

Fig. 1. Relationships between SDLC stages and RM steps

During all 7 stages of SDLC, we continuously pay attention to the new possible risks. In
addition, we check the status of already identified risks in the stages from “Development” to
“Maintenance and operations” but for two reasons: treatment and monitoring. The difference
between treatment and monitoring is a chosen algorithm for risk assessment. “Risk control” is
the final risk management stage of creating a risk mitigation plan for stakeholders and other
participants for analysis. Understanding these relationships allows us to drill down deeper into
the nested classes in the taxonomy correctly due to behaviour scenarios. Now, if we want to add
a new scenario we will have the right place for taxonomy expansion.

Emerging technologies, innovations and other external factors impact the software
development processes inside projects at each stage of SDLC. Team and management make
different impacts according to chosen SDMs but are slightly stable at each SDLC stage.

Software development RMM. Considering the software requirements, SDLC stages,
SDM processes and RM steps the proposed model emphasises the interdependence of the various
elements of the risk management process because, it is important to have an all-in-one approach
that covers all aspects of project development, from planning to deployment and maintenance.
The RMM describes a structured situational approach to risk management in the software
development processes, bringing together various elements, from stakeholders to technology and
external factors. The benefits of the situational approach are obvious because we created a
software development RMM (fig. 2) for risk processing.

66 M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

Stakeholders and risk managers are the main drivers of the project's goals and specifications

with the risk management process, and who is responsible for formalising of the project scope
with a list of requirements.

[- Have impact — External
v factors
) S —
takeholders, Monitor SDLC stag
g 5 SDLCsages |—— e
b Can be implemented

at SDLC stage

Formalize a list of
requirements

Product / project Sections of risks

requirements

Y

Accept software

dev processes Has related subsections of risks

Has compatable
technologies

Depends on
technologies

Risk mitigation plan

Subsections of risks

Accept risk Technologies
. Defi >

management efine a set of

steps rules for handling

SDM processes

Has related groups of risks
Define risk Has a risk of
identification strategy implementation

Group of risks

Has a risk of :—

implementation

Are being managed according to
RM steps Can be
serve by

Fig. 2. Software development RMM

Software
development risks

Has related risks

Today, the software development process is complex because of different technologies in
the background. The mix of technologies brings us benefits but risks as well. The project’s risks,
development processes and external factors require proper management of these risks.

The development processes are being controlled according to chosen SDM processes. The
SDM processes are being approved by stakeholders. They define a risk mitigation plan and curate
the chosen technology. The efficiency of risk management protocols depends on the efficiency
of the chosen SDM for the project implementation and chosen risk management steps. Proper
execution of these steps ensures that risks are managed systematically and effectively.

During the SDLC stages, we consider three levels of risks. On the top level, we have
sections. Risk in the section has more global effects on the project and can have subrisks.
Meanwhile, in the section, we can have different subsections which can include still group levels.
The number of levels doesn’t affect strongly and depends on the actual risk’s components.
Sometimes we can split risk into small components for easy calculation but sometimes we should
describe a complex risk. We accept 3 levels based on the results of investigations.

As can be seen from Figure 2, the external factors influence the project team, such as market
trends, regulatory changes, or economic conditions. They have a significant impact on the project
and must be factored into the risk management plan.

Software development risk taxonomy. The context is correctly represented by a
situational approach where all risk indication activities and risk mitigation algorithms are in the
same context with software requirements at the SDLC stages for different SDMs. The software
requirements are the first item there. Indeed, the software development risk taxonomy,

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

67

classifying the risks, helps us process the risks much better, builds the risk datasets and
knowledge base and so on. It works fine when we can correctly identify a risk. Sometimes, one
risk might have some indicators or risk indicators can point to some risks. In this case, we should
dive deeper to find the semantic relationships between indicators and requirements and include
them in the taxonomy (fig. 3).

| Root: Sofware development risks |

_{

A root list of Functional requirements |

_|

Functional requirement 1

Functional requirement | description

Alist of related technologies

0

Technology |

Technology description

§

A list of compatible technologies J

i

Compatible technology 1 [

A list of risks]

_{

Alist of SDLC stages

]—{ SDLC-stage-1: Project initiation and planning |

SDLC-stage-1 description |

Alist of Sections for SDLC-stage-1 foonmeeeneeaes :

L

Section 1 of SDLC-stage-1 |

'—| Section 1 risks description I
— Alist of Section I risks |
|—1 Risk 1 of Section | I

_|

Risk 1 of Section | description |

_.{

A list of RM activities to serve Risk1

RM-step-1: Risk identification

RM-step-2: Risk analysis

RM-step-3: Risk treatment

RM-step-4: Risk monitoring

RM-step-5: Risk mitigation

A list of related risk

_1
_.i

A list of risk attributes

Cloud Computing Platforms
Containerization Tools

DevOps Tools

Continuous Integration/Continuous
Deployment (CI/CD)
Microservices Architectures
Artificial Intelligence and Machine Learning
Progressive Web Apps (PWAs)
Serverless Architecture

Blockchain Technology

Others

Jrmmemmmm e >

Project Initiation and Planning
Requirement Analysis

Design

Development

Testing

Deployment

Maintenance and Operations

Team and management

External factors

Emerging technologies and innovations

Scope Definition Risks
Resource Allocation Risks
Planning and Scheduling Risks
Stakeholder Engagement Risks
Financial Risks

Legal and Compliance Risks
Technology Risks

Project Management Risks

Probability

Impact

Exposure

Velocity

Manageability

Dependency

Detectability

Source

Risk Tolerance

Mitigation Costs and Efforts

_|

A list of risk impact factors

_|

Alist of Sub-sections of Section 1 |

Sub-section 1 of Section | |

_|

Functional requirement k

Sub-section | risks description

0

A list of Sub-section | risks

—| Aroot list of Non-functional requirements |

_{

A oot list of Special requirements |

Complexity

Change Management
Technology

Team Expertise and Stability
Project Scope and Requirements
Deadline Pressures

Resource Allocation

Regulatory and Compliance Requirements
Vendor Dependence

Security and Privacy Concerns
Testing and Quality Assurance
Stakeholder Engagement

Fig. 3. A high-level fragment of the Software Development Risk Taxonomy

Software development risks are affected by various factors, including complexity, change
management, technology, team experience, project scope and requirements, time constraints,

68 M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

resource allocation, regulatory and compliance requirements, vendor dependency, security and
privacy issues, testing processes, and quality assurance and stakeholder involvement.

Complex systems often have more integration points and dependencies, which can create
more potential points of failure. Change management is critical because frequent changes
without proper control can lead to inconsistencies, defects, and project delays.

Technology, including programming languages, frameworks and tools, impacts risk. New
or rapidly evolving technologies can offer benefits but also carry risks due to potential unknowns
and a lack of established best practices. The expertise and stability of the team are essential to
the success of the project. Poorly defined or frequently changing requirements can increase risks,
leading to budget overruns, delays and resource constraints. Deadline pressures can force teams
to rush through development stages, increasing the risk of errors and failures. Insufficient or
poorly allocated resources can hinder project completion and increase risks, related to quality
and deadlines.

Summary. A software development risk taxonomy is one of the important parts of
intellectual systems for risk management. The developed taxonomy combines software
requirements, SDLC stages and risk management steps for different SDMs. It facilitates a
structured and systematic approach to risk management improving the decision-making
processes. Being developed based on domain experts’ knowledge, the taxonomy allows us to
follow the best practices, using existing expertise, in the poorly formalised field of software
development.

Among the received results we want to highlight:

- Now, SLDC stages, SDM processes, RM steps and software requirements are

connected within the newly updated software development RMM.

- The software development risk taxonomy conception is being enhanced in place of
software requirements, SLDC stages, SDM processes and RM steps.

- The first version of the created taxonomy includes 793 different requirements, 10
sections of risks, 64 subsections and 415 groups of software development risks
according to the proposed taxonomy structure. The experts continue to work on the
taxonomy increasing the number of requirements and risks for them.

The created RMM and appropriate taxonomy allow systematic identification of the risks
across different sections, subsections and groups. This structure helps ensure that risks are not
overlooked and that every potential threat is considered during the risk assessment phase. The
number of levels in the risk hierarchy could be extended in the future if it is required.

By defining the hierarchy of risks we enhanced risk understanding and clarity. It helps to
increase the decision-making process for a clearer understanding of potential issues. This clarity
is crucial for effective communication and ensuring that everyone has a clear understanding of
risk. It is crucially important for risk mitigation purposes because the taxonomy helps to define
the nature of the identified risks precisely.

The taxonomy splits different risks by meaning and allows leveraging LLMs to automate
many aspects of risk management, from identification to monitoring. Of course, if new risks
appear, a flexible taxonomy can be updated and expanded allowing LLMs to adapt quickly to
the changes in the project environment or technology avoiding unpredictable hallucinations. This
adaptability allows immediate reaction to new risks that appear as technology evolves.

In conclusion, the proposed RMM and appropriate risk taxonomy significantly enhance the
capabilities of LLMs in managing software development risks by providing the context for risk

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar 69
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

appearance and a structured and consistent framework for risk management. This allows us to
manage future risks starting from the requirement formalisation and description stage.

REFERENCES

[1] Hossain, Mohammad. (2023). Software Development Life Cycle (SDLC) Methodologies
for Information Systems Project Management.
DOI: https://doi.org/10.36948/ijfmr.2023.v05i05.6223

[2] Hrishitva Patel. An Insight on (SDLC) Software Development Lifecycle Process Models.
Advance. April 21, 2023. DOI: https://doi.org/10.31124/advance.22354453.v1

[3] Rozhnova, T., Tomachynska, V., & Korsun, D. (2022). Life cycle models, principles and
methodologies of software development. Scientific Collection «InterConf+», 1. 28 (137),
pp. 394-401. DOI: https://doi.org/10.51582/interconf.19-20.12.2022.040

[4] Gurung, Gagan & Shah, Rahul & Jaiswal, Dhiraj. (2020). Software Development Life
Cycle Models - A Comparative Study. International Journal of Scientific Research in
Computer Science, Engineering and Information ~ Technology. 30-37.
DOI: http://dx.doi.org/10.32628/CSEIT206410

[5] M. Lyashkevych, V. Lyashkevych and R. Shuvar. "Risks' Attribute Values Evaluation in
Software Engineering by Monte Carlo Simulation," 2023 IEEE 13th International
Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 2023, pp.
137-141. DOI: http://dx.doi.org/10.1109/EL1T61488.2023.10310775

[6] Khatavakhotan, Ahdieh & Ow, Siew. (2015). Development of a software risk management
model using unique features of a proposed audit component. Malaysian Journal of
Computer Science. 28. 110-131.
URL.: https://www.researchgate.net/publication/281993369 Development of a software

risk_management_model_using_unique features of a proposed audit component

[71 Dey, Prasanta & Kinch, Jason & Ogunlana, Stephen. (2007). Managing risk in software
development projects: A case study. Industrial Management and Data Systems. 107. 284-
303. DOI: http://dx.doi.org/10.1108/02635570710723859

[8] Y. Hrytsiuk, P. Grytsyuk, T. Dyak and H. Hrynyk. "Software Development Risk Modeling,"
2019 IEEE 14th International Conference on Computer Sciences and Information
Technologies (CsIm), Lviv, Ukraine, 2019, pp. 134-137,
doi: http://dx.doi.org/10.1109/STC-CSIT.2019.8929778

[9] S. Islam and S. H. Houmb. Integrating risk management activities into requirements
engineering. In Proc. of the 4th IEEE Research International Conference on Research
Challenges in Information Science(RCI1S2010), Nice, France, 2010

[10] S. Islam and S. H. Houmb. Towards a framework for offshore outsource software
development risk management model. Journal of Software (JSW), Special Issue: Selected
Papers of the IEEE International Conference on Computer and Information Technology
(ICCIT 2009), 2011.

[11] Henri, Evans. (2020). A Review of Risk Management in Different Software Development
Methodologies.

[12] Agrawal, T., Walia, G.S. & Anu, V.K. Development of a Software Design Error Taxonomy:
A Systematic Literature Review. SN COMPUT. SCI. 5, 467 (2024).
DOI: https://doi.org/10.1007/s42979-024-02797-2

https://doi.org/10.36948/ijfmr.2023.v05i05.6223
https://doi.org/10.31124/advance.22354453.v1
https://doi.org/10.51582/interconf.19-20.12.2022.040
http://dx.doi.org/10.32628/CSEIT206410
http://dx.doi.org/10.1109/ELIT61488.2023.10310775
https://www.researchgate.net/publication/281993369_Development_of_a_software_risk_management_model_using_unique_features_of_a_proposed_audit_component
https://www.researchgate.net/publication/281993369_Development_of_a_software_risk_management_model_using_unique_features_of_a_proposed_audit_component
http://dx.doi.org/10.1108/02635570710723859
http://dx.doi.org/10.1109/STC-CSIT.2019.8929778
https://doi.org/10.1007/s42979-024-02797-2

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

[13] Oehmen, Josef & Seering, Warren & Bassler, Denis & Ben-Daya, Mohamed. (2013). A

comparison of the integration of Risk management Principles in Product Development
Approaches. 3.

[14] Menezes Junior, Jillio & Gusmao, Cristine & Moura, Hermano. (2013). Defining

Indicators for Risk Assessment in Software Development Projects. CLEI Electronic
Journal. 16. 11-11.

URL.: https://www.researchgate.net/publication/317447281 Defining_Indicators_for Ris
k_Assessment_in_Software Development_Projects

[15] Matusova, Olena & Victoriya, Andryeyeva & Viktor, Ahodzinsky. (2019). Risk

Management Models. Herald of Kyiv National University of Trade and Economics. 128.
75-85.

URL.: https://www.researchgate.net/publication/338171666 RISK_MANAGEMENT_ M
ODELS

[16] Alexsandro Souza Filippetto, Robson Lima, Jorge Luis Victoria Barbosa. A risk prediction

model for software project management based on similarity analysis of context histories.
Information and Software Technology. Volume 131. 2021.
DOI: http://dx.doi.org/10.1016/j.infsof.2020.106497

[17] Lyashkevych V.Y. Using the situational approach in the construction industry ontology

"Predictive diagnostics computer means” [Text] // V.Y. Lyashkevych, R.l. Makarchuk,
A.A. Nadyeyev / Bulletin Khmelnytsky National University. - No 5. - 2013. - P. 152-158.

CTBOPEHHS TAKCOHOMII PU3HUKIB TIPOTPAMHOI'O 3ABE3IIEYEHHSA
HA OCHOBI KOMIUVIEKCHHUX ITPOLECIB PO3POBKHA

M. JIsmkeBuy, I. Porauskuii, B. JIsmkesuny, P. lllyBap

Kageopa cucmemmnozo npoexmyeanms,
Jlveiecokutl HayionanvHuil yHieepcumem imeni leana dpanka,
eyn. [pacomanosa, 50, Jlveis, 790035, Yrpaina
mariia.liashkevych@Inu.edu.ua

Pusuku mnporpamMHOro 3abe3nedyeHHs 3aBXIM € HAI3BHYAHHO BaXJIMBOIO TEMOKO JUIS
JOCHI/PKEHb, OCKUTBKM MPOIEC PO3POOKH MPOTpaMHOTO 3a0e3MedueHHs IOCUTh JOpPOTHH, a
KOHKYPEHIIisl TOCUTh BUCOKa, MI00 ioro irHopyBatu. Xoda «30J0Ta» epa JJIs CTapTar-MpOoeKTiB
MOBUIHLHO 3aKIHUYETHCS, OCTaHHI TOCATHEHHS B TEHEPATUBHOMY IITyYHOMY IHTEJIEKTi IIOKa3yIoTh,
IO CaMe 4ac «PU3UKHYTH» 1 3aXONUTH PHHOK IPOTPAMHOTO 3a0e3IeUeHHs 3a JOMOMOTO i€l
TexHouoril. TakuM YMHOM, HEOOXiITHO MpoaHaNi3yBaTH BXKE BiOMI PU3MKHM Ta BH3HAUUTH HOBI
PH3MKH, OB’ s13aHi 3 Oi3HEC-MOJIeISIMU Ta PUHKOBUMHU YMOBaMH 3 reHepylodoro 3aaTHicTio 1111,

B3aeM03B’s130Kk MDK BHMOTaMH IIPOrpaMHOro 3abe3leueHHs] Ta PH3UKaMHU PO3pOOIICHHS
MIPOrpaMHOTo 3a0e3MedeHHs] BCTAHOBIEHI 3a JOIMOMOrOI BH3HAYEHHMX IHIAMKATOPIB PU3HKIB.
3anponoHOBaHI IHAWKATOPH PHU3UKIB HA KOXHIM CTamgil JXKUTTEBOTO LHUKIY PO3POOICHHS
MPOTPaMHOTO 3a0€3MeUeHHs Ta iX 3B A3KH 13 00PaHOI0 METOIOJIOTIEI0 PO3POOIEHHS TPOTPAMHOTO
3a0e3MeYeHHs AaloTh MOXIIMBICTH Kpalle CTPYKTYPYBaTH NOHSTTS B TaKCOHOMIi pPHU3HUKIB
PO3pOOIICHHS MPOrPaMHOT0 3a0e3IeUeHHS.

VY cTaTTi mpoaHai30BaHO yXKe ICHYIOUM TaKCOHOMIl MPOrpaMHHX PHU3MKIB, TX HEJONIKK Ta
nepeBard, pPO3MISIHYTO CTafil JKHUTTEBOrO IMKIYy pPO3POOKH MpPOrpaMHOro 3abe3nedeHHs,
aKTHBHOCTI IIOJ0 KepYBaHHS PU3MKaMH B yMOBaX Di3HHX MoJieJeil po3poOiIeHHsT POrpaMHOro
3abe3neyeHHs. BUKOPUCTOBYIOUM 3alpOINOHOBaHY TAaKCOHOMIO, TOB'S3aHO BCi BHIE 3rajaHi

https://www.researchgate.net/publication/317447281_Defining_Indicators_for_Risk_Assessment_in_Software_Development_Projects
https://www.researchgate.net/publication/317447281_Defining_Indicators_for_Risk_Assessment_in_Software_Development_Projects
https://www.researchgate.net/publication/338171666_RISK_MANAGEMENT_MODELS
https://www.researchgate.net/publication/338171666_RISK_MANAGEMENT_MODELS
http://dx.doi.org/10.1016/j.infsof.2020.106497
mailto:mariia.liashkevych@lnu.edu.ua

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar 71
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

aKTHBHOCTI Ta IPOIIECH B OHIH TAKCOHOMI, IO IO3BOJISIE JIETKO iMEHTH(IKYBaTH PU3UKH Ha OCHOBI
BIZIOMHX BHMOT JI0 IIPOIPaMHOT0 320€3IIeUeHHs Ta HAaBIIAKHL.

CTBOpeHa TakcOHOMisi Oysa MiATBepAXKeHa MESIKUMH eKCIIepTaMH IpeaMETHOi 00macTi.
ChatGPT4 € omHHM i3 eKCHEPTIB, SIKi PO3PaXOBYIOTh Ha MOMJIMBOCTI BEIMKMX MOBHHX MOJeNei
JUIA BUpIIIEHHS 3aBJaHb Yy3arajbHeHHA Ta Kiacudikamii Tekcty. I aBTOMaTW4YHOTO
OTMpAaIOBaHHS 3alPONOHOBAHOI TAaKCOHOMIl 3aC00aMHU BENHKHX MOBHHX MoJeield BCi MOHATTA
TAKCOHOMii PH3MKIB Mal0 BiANOBIAHMHA TEKCTOBHH ONMNC y 3arajJbHOMY CIOBHHMKY HOHSTE.
[IpakTryHi pe3yabTaTH TAKCOHOMIi PH3UKIB € HAJ3BUYAIHO BRKIIMBHMH, OCKIJIBKH MH YHHKA€EMO
TATIONMHANIN BEJIMKMX MOBHHX MOJIEJIEH 1 3aCTOCOBYEMO KepPOBaHHI ITi/IXi]] HA OCHOBI TAKCOHOMIT
10 IIBHUKOT pO3pOoOKH IJIsI yIIPABIiHHS PHU3AKaMU.

Knrouosi crnosa: pw3HKH PO3POOKH TMPOTPAMHOTO 3a0E3MEYCHHs, TAaKCOHOMIisS pPH3HUKIB,
pO3mi3HaBaHHS PH3HKIB, BUSBICHHS PU3UKIB, TAKCOHOMIS, BUMOTH JI0 ITPOTPaMHOr0 3a0e3MeueHHs,
aHai3 BUMOT.

The article was received by the editorial office on 22.07.2024.
Accepted for publication on 01.08.2024.

