
ISSN 2224-087X. Електроніка та інформаційні технології. 2024. Випуск 27. С. 59–71

Electronics and information technologies. 2024. Issue 27. P. 59–71

__

© Lyashkevych M., Rohatskyi I., Lyashkevych V., Shuvar R. 2024

УДК 004.4 DOI: https://doi.org/10.30970/eli.27.5

SOFTWARE RISK TAXONOMY CREATION BASED ON

THE COMPREHENSIVE DEVELOPMENT PROCESSES

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

System Design Department,

Ivan Franko National University of Lviv,

50 Drahomanova St., 79005 Lviv, Ukraine

mariia.liashkevych@lnu.edu.ua

Software risks are always a crucially important topic for research because the software

development process is quite expensive. The competition is high enough to ignore it. Although the

"golden" era for startup projects is slowly ending, the latest achievements in generative AI show

that now is the time to "take risks" and capture the software market using this technology. Therefore,

it is necessary to analyse already known risks and identify new risks associated with business

models and market conditions with generative AI capacity.

The article analyses the already existing taxonomies of software risks, their advantages and

disadvantages, the software development life cycle stages, and risk management activities in the

conditions of different software development models. Using the proposed taxonomy, the noticed

activities and processes are linked in one taxonomy, which allows easy identification of risks based

on known software requirements and vice versa.

The created taxonomy has been validated by some subject domain experts who work at big IT

companies. ChatGPT4 is one of the experts counting on the LLM capability to resolve the

summarisation and text classification tasks. The practical results of the risk taxonomy are crucially

important because we avoid LLM hallucinations and enable a taxonomy-driven approach to prompt

engineering for risk management.

Keywords: software development risks, risk taxonomy, risk recognition, risk detection,

taxonomy, software requirements, requirement analysis.

Introduction. Understanding the software requirements and knowledge of the software

development process play a key role in studying and using a huge volume of information for

software risk recognition. This information explains the risks nature. As common, risk is defined

as the denial of one or more objectives or the loss of the achievement of some relevant objectives.

Risks always blur targets, and certain goals can be risky. [1-5]

In developing an effective risk management model (RMM), it is important to consider risks

from all technical and non-technical aspects of development. It is well-known that Software

Development Live Cycle (SDLC) is almost standardised and has some predefined stages. We

can face different namings in the literature for those stages but let’s follow the namings from [1].

The suggested structure of 7 predefined SDLC stages [1] defines the order of software

development processes and related activities including risk management.

Generally, the SDLC stages are the same for different Software Development Models

(SDM) because they are development milestones and represent a logical sequence of the

https://doi.org/10.30970/eli.27.5
mailto:mariia.liashkevych@lnu.edu.ua

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

60

executed tasks. As was shown in [1-4], there are a lot of different SDMs: Waterfall, Agile,

Extreme Programming, Lean, Prototyping Methodology, Rational Unified Process, Dynamic

Systems, Feature-Driven Development, Spiral Model, Joint Application, Scrum and Rapid

Application. Each provided SDM is a good choice for some reasons and conditions. The authors

in [1] did a good investigation and described these methodologies with explanations, advantages

and disadvantages.

Indeed, each SDM predefines some risk management processes for different SDLC stages.

The main goal of risk management is to identify and control all possible risks before they occur

during software development. [5] Therefore, various types of risks can be detected at almost

every stage. The comprehensive risk model helps manage risks throughout the project, increasing

the likelihood of successful delivery. Developing a comprehensive risk model to manage

software development project risks, we should revise and refine them iteratively if new risks

appear. [5]

In [6] authors came out from a prioritised list of top ten software risk items and considered

them through RMMl using unique features of a proposed audit component. The proposed

software RMM [6] has 5 phases: risk identification, risk measurement, risk assessment, risk

mitigation and contingency plan. This model enriched the main phases of the Boehm RMM

together with a wider range of risk categories. They related the selected risk categories and the

corresponding factors by preparing a classifier. As the authors proved in [6], the proposed model

reduces the unforeseen risks or risks that have already occurred by creating a verifier core that

comprises risk managers and experts. The verifier core is dynamic as it can adapt to each phase,

and this makes the management process efficient and up-to-date.

The RMM is specifically tailored for software development projects [7] and has useful

relationships with the “Functional requirement analysis” step and the “Changing project plan”

and so far for “Establishing the scope of software development project”. The image illustrates a

RMM. This model integrates various decision points and processes to ensure comprehensive

management of risks throughout the SDLC. The provided solution in [7] has decision-making

attributes but doesn’t cover the entire SDLC and of course, we have no connection with SDM in

particular use cases.

Concurrently, throughout the project lifecycle, there is a continuous cycle of learning and

adjusting. Functional requirements are analyzed and refined, and lessons learned are integrated

into the project processes to enhance future decision-making and risk management. By the way,

this model [7] highlights a systematic and dynamic approach to risk management, ensuring that

risks are identified, analyzed, and mitigated effectively to support the successful completion of

software development projects which are pretty good targets for any risk management system.

A proposed method in [8] of modelling the risks of software development makes it possible

to assess different situations at the stages of SDLC, as well as to develop a strategy and tactics

for predicting, perceiving and overcoming the negative consequences of their manifestation. The

model determines the average value of the probability of potential risk events when developing

a suitable set of software that is useful for formulating classification rules of potential risk events

according to the probability of their occurrence. [8]

Technical issues directly related to system hardware and software, such as tool support,

development platform, the technical complexity of the project, specific device or hardware, and

performance characteristics of the product to be developed and deployed. Non-technical issues

relate to the organizational environment, project implementation, development process,

methodological and management issues. [9]

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

61

The authors in [9] view goals as goals, expectations, and limitations of technical and non-

technical challenges and risk factors that prevent the achievement of those goals. Details of early

development components and project success factors are primary sources that facilitate the

understanding of construction fundamentals. These suggestions we considered as useful ones

and will rely on them in the future.

In [10], the authors present RMM to effectively address the risks that obstruct successful

project outcomes. The approach explicitly models the relations between the goals based on the

software development components and project success indicators with the risk factors that

obstruct these goals which is very interesting for us.

As common, we have five basic steps taken to manage risks in software development. [6,

10] These steps are referred to as the risk management process. It begins with identifying risks,

goes on to analyze risks, then the risk is prioritized, a solution is implemented, and finally, the

risk is monitored. Each SDM has predefined software risk management processes.

The authors in [11] follow the goal of finding out whether there is a specific SDM which

will be able to manage the predefined scope of risks. The research method used to accomplish

this task was a comparative study. A comparative study is a method used to compare two or more

ideas that have significant differences. [11] Separately, some authors have designed an error

taxonomy, which includes risk indication activities based on appeared errors. [12] Authors in

[13] have shown a relationship between risk management principles with SDMs.

The usage of indicators is effective in decision-making for risk management tasks. In fact,

despite the relevance of risk management in software projects, software development

organisations are commonly overlooked. One of the reasons for this fact is that the concept of

risk is abstract and subjective, and its management does not bring obvious immediate practical

results. [14] Thus, in this context, [14] aims to define and propose indicators that are specific to

the environments of software projects to support risk assessment activities - risk identification

and risk analysis. On par with risk identification and risk analysis, we still recognize treatment,

monitoring and mitigation activities as described before.

According to [15], the world experience of risk management proves that the principle of

applying a process approach has become the main principle of risk management modernization.

Following the process approach and approved global standards, to ensure the effectiveness of

the risk management system at enterprises, RMM is being built, which should include amidst

main components: risk identification, risk analysis, risk treatment, risk monitoring and risk

mitigation due to risk assessment values.

The context plays a crucially important role in the risk detection and management process

due to the opportunities of Large Language Models (LLM). The authors in [16] have shown the

applicability of risk recommendations for new projects based on the similarity analysis of

contextual stories. This study applies context history inference to project design and planning,

focusing on risk recommendations. Thus, with recommendations tailored to the characteristics

of each new project, the manager begins with a broader set of information for more assertive

project planning. [16] Using the situational approach, as was shown in [17], we can describe a

subject domain of risks in software development.

Emerging technologies and innovations including programming languages, frameworks,

and tools affect different risks at different SDLC stages. Of course, they bring new values and

benefits but there are risks due to unknown potentials and a lack of appropriate expertise. Poorly

formalised or frequently changing requirements increase risks, leading to budget overruns,

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

62

delays, and time with resource constraints. Thus, from time to time, we should update the risk

management activities due to new requirements, new technologies in the market and so on.

After analysing the existing SDLC, SDMs and RMMs we notice that it is difficult to

recognise software development risks based on requirements for software in the initial stages

due to a huge variety of risks, a lack of information about innovative technologies and unclear

context for risk appearance. Finally, the existing RMMs don’t allow help to recognise the risks

from the project requirements description. Thus, we propose our RMM, taking into account the

benefits and shortcomings of the analysed models, which covers the software requirements,

SDLC stages, SDM processes, risk management steps and related context. The software

development risk taxonomy is being built on the proposed RMM.

Risk assessment for SDLC in conditions of different SDMs. From a software risk

perspective, at each SDLC stage, we consider the characteristics of software risk groups, their

indicators and their recognisability. It is a reason why we want to inspect each stage more deeply

due to risks appearance and so on. Therefore, we use the advantages and disadvantages of each

SDM in our analysis because we would like to improve the software development risk taxonomy.

The risk identification method is important place in a comprehensive risk management

approach to improve project success. It is based on the software development risk taxonomy,

which organises risks into a hierarchy of three levels: section, subsection, and group. The method

includes a taxonomy-based questionnaire (TBQ) which consists of questions for each taxonomic

group of risks designed to identify potential risks and issues affecting the software product.

Involving some software development experts, who work at big IT companies, we asked them

about the methodologies and risk levels at each stage of SDLC. We used the method of average

arithmetic ranks to agree with the opinions of experts but will pay more attention to this problem

in the next investigations. The gathered results are shown in Table 1.

Table 1. The results of the expert survey

Methodology/ Process Ideation Analysis Design Development Testing Deployment Maintenance

Dynamic Systems

Development Low Low Low Low Low Low Low

Scrum Development Low Low Low Medium Low Low Low

Extreme Programming Medium Low Low Low Low Low Low

Agile Development Medium Low Low Medium Low Low Low

Spiral Development

Model Medium Low Low Medium Low Low Low

Joint Application

Development Medium Low Low Medium Low Low Low

Lean Development Low Low Medium Medium Medium Low Low

Rational Unified

Process Low Medium Medium Medium Medium Medium Medium

Feature-Driven

Development Medium Medium Medium Medium Medium Medium Medium

Prototyping

Methodology High Medium Medium High Medium Medium High

Waterfall Development Low Medium High High High Medium Medium

Rapid Application

Development High Medium Medium High High Medium High

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

63

The explanation of risk levels:

- Low Risk (green colour). The methodology is well-equipped and organised to handle

this stage with minimal potential risks.

- Medium Risk (yellowish colour). In this case, we expect certain troubles associated

with this stage of the methodology that require careful management.

- High Risk (reddish colour). This stage presents significant challenges and risks under

this methodology and requires extensive management and clarification.

According to our measuring (tabl. 1), we have a rough understanding of SDM and related

risks in each stage of SDLC. These results allow us to understand the challenges of the chosen

SDM at each stage of SDLC. Building the taxonomy of software development risks we will pay

attention to these results and identify risk groups for reddish and yellowish SDLC stages.

Thus, we will continue to define the risk attributes around them but, before we go ahead

with nested items of the taxonomy, we would like to formalise and create a software development

RMM where we can connect functional and non-functional software requirements with software

development processes and appropriate risks.

Then we tried to extend the number of risk attributes and risks themselves in the dataset but

we faced the multi-label problem when one attribute could be related to some risks with special

weight. Thus, we want to avoid this problem by general taxonomy because when we have

taxonomy, we can split the same meaning risks and their attributes between different SDM and

SDLC stages.

Risk indicators and related activities. Analysing the SDM process for risk handling we

came to the risk indication activities for SDM. These activities allow the recognition of semantic

relationships for each SDM at each SDLC stage. Under a risk indication activity, we understand

an action which helps identify, analyse, treat, monitor and mitigate the risk. Continuously

analysing the risk indication activities for other SDMs we gathered the most essential of them in

Table 2 which describes a general SDM to how each method applies to risk management at each

stage of the SDLC. This representation involves the common risk management steps:

identification, analysis, assessment/classification, treatment and monitoring/review at each stage

of the SDLC.

Generally, analysing the risk indication activities of risk management systems, we have

recognised some applicable risk management processes for all the SDMs. For example, they are

for two of the most popular SDMs: Waterfall Development and Agile Development.

The essential risk management processes in Waterfall Development:

- Creating comprehensive requirement documentation to reduce misunderstandings.

- Thorough reviewing to obtain formal approval before proceeding with requirements.

- Phase-wise testing to catch defects before moving to the next phase.

- Formalisation of the processes for managing changes and minimising risks.

- Perform detailed risk assessments before the end of each phase to have time for changes

in the next phase.

- Gather post-implementation reviews after project completion for future projects.

- Develop and maintain a contingency plan for critical path activities.

The essential risk management processes in Agile Development:

- Regular retrospectives reflect the risks of the current working methods.

- Facilitate daily meetings to address current risks and issues quickly.

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

64

- Thoroughly review sprint outcomes and adapt the backlog to mitigate risks.

- Automate testing and deployment to detect integration issues as early as possible.

- User story mapping to ensure understanding and alignment across the team.

Table 2. Risk indication activities

Methodology

/ Stages

Ideation Requirement

Analysis

Architecture

Design

Development Testing Deployment Maintenance

Waterfall

Development

Early risk

identification and

assessment to avoid

scope changes later

Detailed risk

analysis and

evaluation in

documentation

Architectural

risks are

identified and

strategies formed

Code risks are treated through

thorough planning. Integration

risks evaluated and plans for

testing established

Risk treatment

through

systematic

testing

Deployment

risks monitored

and reviewed

Ongoing risk

monitoring and

maintenance

strategies

Agile

Development

Continual risk

identification

through feedback

loops

Emphasis on

user stories to

identify and

analyse risks.

Regular

refactoring to

address design

risks

Continuous integration helps

treat coding risks early. Daily

builds and integration to

manage integration risks

Sprint-based

testing to treat

and review risks

Incremental

deployment to

mitigate risks

Regular updates

and retrospectives

for maintenance

risks

Extreme

Programming

Risks identified

through fast

iterations

Close customer

collaboration

for risk

analysis

Simple design

principles to

reduce design

risks

Pair programming and test-

driven development to treat

coding risks. Continuous

integration and shared

codebases reduce risks

Emphasis on

customer tests to

evaluate risks

Small releases to

manage

deployment

risks

Iterative

improvements

and constant

feedback loops

Lean

Development

Risk identification

aligned with value

stream mapping

Lean analytics

to evaluate

requirement

risks

Design risks are

managed by

removing waste

and inefficiency

Emphasis on automation and

standardization for coding.

Just-in-time integration to

minimize risks

Built-in testing

to continuously

evaluate risks

Lean approaches

to streamline

deployment

Kaizen

(continuous

improvement) for

maintenance

Prototyping

Methodology

Prototyping to

quickly identify

feasibility risks

Risk analysis

through

iterative

feedback on

prototypes

Design risks

identified and

treated with each

prototype

iteration

Coding in stages, with risks

identified in prototype

reviews. Integration handled

iteratively to manage risks

Prototype

testing to

evaluate risks

continuously

Early and

frequent

deployment of

prototypes

Feedback

incorporated into

ongoing

maintenance

Rational

Unified

Process

Risks identified

during the inception

phase

Requirements

elaborated with

risk

considerations

Architectural

baseline to

address design

risks

The implementation phase

focuses on managing coding

risks. Integration assessed at

each iteration

Testing phases

specifically

aimed at risk

treatment

The transition

phase handles

deployment

risks

Support and

maintenance are

planned and risk-

aware

Dynamic

Systems

Development

Feasibility studies

to identify initial

risks

Iterative

workshops to

analyze

requirement

risks

Design risks

managed through

continuous user

feedback

Repeated prototyping helps

treat coding risks. Frequent

integration sessions to manage

integration risks

Demonstrators

and prototypes

used to test and

adjust

Deployment

reviewed

through user

feedback

Continuous user

involvement

helps monitor

maintenance risks

Feature-

Driven

Development

Initial risk

assessment during

overall model

creation

Feature list

helps analyze

requirement

risks

Design by feature

to address design-

specific risks

Coding by feature, focusing

on risk mitigation per feature.

Regular builds to manage

integration risks

Feature-based

testing to

evaluate risks

Features

deployed

incrementally to

manage risks

Ongoing feature

enhancement to

address

maintenance risks

Spiral

Development

Model

Objective setting

includes risk

determination

Progressive

risk analysis

and

requirement

refinement

Prototyping and

simulations to

address design

risks

Development and testing to

manage coding risks. Risk-

driven integration process

Detailed risk

evaluations

during test

phases

Systematic risk

management for

deployment

Regular risk

reassessment for

maintenance

Joint

Application

Development

Risks identified in

collaborative

sessions

Requirement

workshops to

analyze and

evaluate risks

Design sessions

help identify

design risks early

Coding in collaborative

environments to treat risks.

Integration tested in joint

sessions

Testing involves

all stakeholders

to review risks

Deployment

planned with

stakeholder

input to

minimize risks

Continuous

feedback loops

for maintenance

risks

Scrum

Development

Sprint planning

includes risk

identification

Backlog

grooming

sessions to

analyze risks

Design risks

managed during

sprints

Coding in sprints with

continuous reviews for risks.

Integration risks handled

during sprint reviews

Sprint-based

testing phases

for risk

evaluation

Deployment

risks are

managed at the

end of sprints.

Sprint

retrospectives to

monitor

maintenance risks

Rapid

Application

Development

The initial phase

includes risk

identification for

the scope

Workshops and

prototyping to

analyze

requirements

risks

Iterative design

and feedback

loops to manage

design risks

Timeboxing coding phases to

quickly address risks.

Integration is conducted in

stages to evaluate risks

Testing phases

focus on treating

identified risks

Staged

deployment to

mitigate

deployment

risks

Ongoing

iterations for

maintenance with

risk reviews

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

65

Stakeholders, architects, experts and others are proactive participants in risk management

discussions. They define the problem statement for the business problem at the first SDLC stage

named “Project initiation and planning”. At this stage, we create an initial solution which is a

matter for discussion at the “Architectural Design” and “Requirement analysis” SDLC stages.

After, we try to identify the risks as early as possible even when we have an initial solution. The

relationships between the 7 stages of SDLC and the 5 steps of risk management processes are

shown in Figure 1.

Fig. 1. Relationships between SDLC stages and RM steps

During all 7 stages of SDLC, we continuously pay attention to the new possible risks. In

addition, we check the status of already identified risks in the stages from “Development” to

“Maintenance and operations” but for two reasons: treatment and monitoring. The difference

between treatment and monitoring is a chosen algorithm for risk assessment. “Risk control” is

the final risk management stage of creating a risk mitigation plan for stakeholders and other

participants for analysis. Understanding these relationships allows us to drill down deeper into

the nested classes in the taxonomy correctly due to behaviour scenarios. Now, if we want to add

a new scenario we will have the right place for taxonomy expansion.

Emerging technologies, innovations and other external factors impact the software

development processes inside projects at each stage of SDLC. Team and management make

different impacts according to chosen SDMs but are slightly stable at each SDLC stage.

Software development RMM. Considering the software requirements, SDLC stages,

SDM processes and RM steps the proposed model emphasises the interdependence of the various

elements of the risk management process because, it is important to have an all-in-one approach

that covers all aspects of project development, from planning to deployment and maintenance.

The RMM describes a structured situational approach to risk management in the software

development processes, bringing together various elements, from stakeholders to technology and

external factors. The benefits of the situational approach are obvious because we created a

software development RMM (fig. 2) for risk processing.

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

66

Stakeholders and risk managers are the main drivers of the project's goals and specifications

with the risk management process, and who is responsible for formalising of the project scope

with a list of requirements.

Fig. 2. Software development RMM

Today, the software development process is complex because of different technologies in

the background. The mix of technologies brings us benefits but risks as well. The project’s risks,

development processes and external factors require proper management of these risks.

The development processes are being controlled according to chosen SDM processes. The

SDM processes are being approved by stakeholders. They define a risk mitigation plan and curate

the chosen technology. The efficiency of risk management protocols depends on the efficiency

of the chosen SDM for the project implementation and chosen risk management steps. Proper

execution of these steps ensures that risks are managed systematically and effectively.

During the SDLC stages, we consider three levels of risks. On the top level, we have

sections. Risk in the section has more global effects on the project and can have subrisks.

Meanwhile, in the section, we can have different subsections which can include still group levels.

The number of levels doesn’t affect strongly and depends on the actual risk’s components.

Sometimes we can split risk into small components for easy calculation but sometimes we should

describe a complex risk. We accept 3 levels based on the results of investigations.

As can be seen from Figure 2, the external factors influence the project team, such as market

trends, regulatory changes, or economic conditions. They have a significant impact on the project

and must be factored into the risk management plan.

Software development risk taxonomy. The context is correctly represented by a

situational approach where all risk indication activities and risk mitigation algorithms are in the

same context with software requirements at the SDLC stages for different SDMs. The software

requirements are the first item there. Indeed, the software development risk taxonomy,

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

67

classifying the risks, helps us process the risks much better, builds the risk datasets and

knowledge base and so on. It works fine when we can correctly identify a risk. Sometimes, one

risk might have some indicators or risk indicators can point to some risks. In this case, we should

dive deeper to find the semantic relationships between indicators and requirements and include

them in the taxonomy (fig. 3).

Fig. 3. A high-level fragment of the Software Development Risk Taxonomy

Software development risks are affected by various factors, including complexity, change

management, technology, team experience, project scope and requirements, time constraints,

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

68

resource allocation, regulatory and compliance requirements, vendor dependency, security and

privacy issues, testing processes, and quality assurance and stakeholder involvement.

Complex systems often have more integration points and dependencies, which can create

more potential points of failure. Change management is critical because frequent changes

without proper control can lead to inconsistencies, defects, and project delays.

Technology, including programming languages, frameworks and tools, impacts risk. New

or rapidly evolving technologies can offer benefits but also carry risks due to potential unknowns

and a lack of established best practices. The expertise and stability of the team are essential to

the success of the project. Poorly defined or frequently changing requirements can increase risks,

leading to budget overruns, delays and resource constraints. Deadline pressures can force teams

to rush through development stages, increasing the risk of errors and failures. Insufficient or

poorly allocated resources can hinder project completion and increase risks, related to quality

and deadlines.

Summary. A software development risk taxonomy is one of the important parts of

intellectual systems for risk management. The developed taxonomy combines software

requirements, SDLC stages and risk management steps for different SDMs. It facilitates a

structured and systematic approach to risk management improving the decision-making

processes. Being developed based on domain experts’ knowledge, the taxonomy allows us to

follow the best practices, using existing expertise, in the poorly formalised field of software

development.

Among the received results we want to highlight:

- Now, SLDC stages, SDM processes, RM steps and software requirements are

connected within the newly updated software development RMM.

- The software development risk taxonomy conception is being enhanced in place of

software requirements, SLDC stages, SDM processes and RM steps.

- The first version of the created taxonomy includes 793 different requirements, 10

sections of risks, 64 subsections and 415 groups of software development risks

according to the proposed taxonomy structure. The experts continue to work on the

taxonomy increasing the number of requirements and risks for them.

The created RMM and appropriate taxonomy allow systematic identification of the risks

across different sections, subsections and groups. This structure helps ensure that risks are not

overlooked and that every potential threat is considered during the risk assessment phase. The

number of levels in the risk hierarchy could be extended in the future if it is required.

By defining the hierarchy of risks we enhanced risk understanding and clarity. It helps to

increase the decision-making process for a clearer understanding of potential issues. This clarity

is crucial for effective communication and ensuring that everyone has a clear understanding of

risk. It is crucially important for risk mitigation purposes because the taxonomy helps to define

the nature of the identified risks precisely.

 The taxonomy splits different risks by meaning and allows leveraging LLMs to automate

many aspects of risk management, from identification to monitoring. Of course, if new risks

appear, a flexible taxonomy can be updated and expanded allowing LLMs to adapt quickly to

the changes in the project environment or technology avoiding unpredictable hallucinations. This

adaptability allows immediate reaction to new risks that appear as technology evolves.

In conclusion, the proposed RMM and appropriate risk taxonomy significantly enhance the

capabilities of LLMs in managing software development risks by providing the context for risk

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

69

appearance and a structured and consistent framework for risk management. This allows us to

manage future risks starting from the requirement formalisation and description stage.

REFERENCES

[1] Hossain, Mohammad. (2023). Software Development Life Cycle (SDLC) Methodologies

for Information Systems Project Management.

DOI: https://doi.org/10.36948/ijfmr.2023.v05i05.6223

[2] Hrishitva Patel. An Insight on (SDLC) Software Development Lifecycle Process Models.

Advance. April 21, 2023. DOI: https://doi.org/10.31124/advance.22354453.v1

[3] Rozhnova, T., Tomachynska, V., & Korsun, D. (2022). Life cycle models, principles and

methodologies of software development. Scientific Collection «InterConf+», I. 28 (137),

pp. 394–401. DOI: https://doi.org/10.51582/interconf.19-20.12.2022.040

[4] Gurung, Gagan & Shah, Rahul & Jaiswal, Dhiraj. (2020). Software Development Life

Cycle Models - A Comparative Study. International Journal of Scientific Research in

Computer Science, Engineering and Information Technology. 30-37.

DOI: http://dx.doi.org/10.32628/CSEIT206410

[5] M. Lyashkevych, V. Lyashkevych and R. Shuvar. "Risks' Attribute Values Evaluation in

Software Engineering by Monte Carlo Simulation," 2023 IEEE 13th International

Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 2023, pp.

137-141. DOI: http://dx.doi.org/10.1109/ELIT61488.2023.10310775

[6] Khatavakhotan, Ahdieh & Ow, Siew. (2015). Development of a software risk management

model using unique features of a proposed audit component. Malaysian Journal of

Computer Science. 28. 110-131.

URL: https://www.researchgate.net/publication/281993369_Development_of_a_software

_risk_management_model_using_unique_features_of_a_proposed_audit_component

[7] Dey, Prasanta & Kinch, Jason & Ogunlana, Stephen. (2007). Managing risk in software

development projects: A case study. Industrial Management and Data Systems. 107. 284-

303. DOI: http://dx.doi.org/10.1108/02635570710723859

[8] Y. Hrytsiuk, P. Grytsyuk, T. Dyak and H. Hrynyk. "Software Development Risk Modeling,"

2019 IEEE 14th International Conference on Computer Sciences and Information

Technologies (CSIT), Lviv, Ukraine, 2019, pp. 134-137,

doi: http://dx.doi.org/10.1109/STC-CSIT.2019.8929778

[9] S. Islam and S. H. Houmb. Integrating risk management activities into requirements

engineering. In Proc. of the 4th IEEE Research International Conference on Research

Challenges in Information Science(RCIS2010), Nice, France, 2010

[10] S. Islam and S. H. Houmb. Towards a framework for offshore outsource software

development risk management model. Journal of Software (JSW), Special Issue: Selected

Papers of the IEEE International Conference on Computer and Information Technology

(ICCIT 2009), 2011.

[11] Henri, Evans. (2020). A Review of Risk Management in Different Software Development

Methodologies.

[12] Agrawal, T., Walia, G.S. & Anu, V.K. Development of a Software Design Error Taxonomy:

A Systematic Literature Review. SN COMPUT. SCI. 5, 467 (2024).

DOI: https://doi.org/10.1007/s42979-024-02797-2

https://doi.org/10.36948/ijfmr.2023.v05i05.6223
https://doi.org/10.31124/advance.22354453.v1
https://doi.org/10.51582/interconf.19-20.12.2022.040
http://dx.doi.org/10.32628/CSEIT206410
http://dx.doi.org/10.1109/ELIT61488.2023.10310775
https://www.researchgate.net/publication/281993369_Development_of_a_software_risk_management_model_using_unique_features_of_a_proposed_audit_component
https://www.researchgate.net/publication/281993369_Development_of_a_software_risk_management_model_using_unique_features_of_a_proposed_audit_component
http://dx.doi.org/10.1108/02635570710723859
http://dx.doi.org/10.1109/STC-CSIT.2019.8929778
https://doi.org/10.1007/s42979-024-02797-2

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

70

[13] Oehmen, Josef & Seering, Warren & Bassler, Denis & Ben-Daya, Mohamed. (2013). A

comparison of the integration of Risk management Principles in Product Development

Approaches. 3.

[14] Menezes Júnior, Júlio & Gusmao, Cristine & Moura, Hermano. (2013). Defining

Indicators for Risk Assessment in Software Development Projects. CLEI Electronic

Journal. 16. 11-11.

URL: https://www.researchgate.net/publication/317447281_Defining_Indicators_for_Ris

k_Assessment_in_Software_Development_Projects

[15] Matusova, Olena & Victoriya, Andryeyeva & Viktor, Ahodzinsky. (2019). Risk

Management Models. Herald of Kyiv National University of Trade and Economics. 128.

75-85.

URL: https://www.researchgate.net/publication/338171666_RISK_MANAGEMENT_M

ODELS

[16] Alexsandro Souza Filippetto, Robson Lima, Jorge Luis Victória Barbosa. A risk prediction

model for software project management based on similarity analysis of context histories.

Information and Software Technology. Volume 131. 2021.

DOI: http://dx.doi.org/10.1016/j.infsof.2020.106497

[17] Lyashkevych V.Y. Using the situational approach in the construction industry ontology

"Predictive diagnostics computer means" [Text] // V.Y. Lyashkevych, R.I. Makarchuk,

A.A. Nadyeyev / Bulletin Khmelnytsky National University. - No 5. - 2013. - P. 152-158.

СТВОРЕННЯ ТАКСОНОМІЇ РИЗИКІВ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

НА ОСНОВІ КОМПЛЕКСНИХ ПРОЦЕСІВ РОЗРОБКИ

М. Ляшкевич, І. Рогацький, В. Ляшкевич, Р. Шувар

Кафедра системного проектування,

Львівський національний університет імені Івана Франка,

вул. Драгоманова, 50, Львів, 79005, Україна

mariia.liashkevych@lnu.edu.ua

Ризики програмного забезпечення завжди є надзвичайно важливою темою для

досліджень, оскільки процес розробки програмного забезпечення досить дорогий, а

конкуренція досить висока, щоб його ігнорувати. Хоча «золота» ера для стартап-проектів

повільно закінчується, останні досягнення в генеративному штучному інтелекті показують,

що саме час «ризикнути» і захопити ринок програмного забезпечення за допомогою цієї

технології. Таким чином, необхідно проаналізувати вже відомі ризики та визначити нові

ризики, пов’язані з бізнес-моделями та ринковими умовами з генеруючою здатністю ШІ.

Взаємозв’язок між вимогами програмного забезпечення та ризиками розроблення

програмного забезпечення встановлені за допомогою визначених індикаторів ризиків.

Запропоновані індикатори ризиків на кожній стадії життєвого циклу розроблення

програмного забезпечення та їх зв’язки із обраною методологією розроблення програмного

забезпечення дають можливість краще структурувати поняття в таксономії ризиків

розроблення програмного забезпечення.

У статті проаналізовано уже існуючи таксономії програмних ризиків, їх недоліки та

переваги, розглянуто стадії життєвого циклу розробки програмного забезпечення,

активності щодо керування ризиками в умовах різних моделей розроблення програмного

забезпечення. Використовуючи запропоновану таксономію, пов'язано всі вище згадані

https://www.researchgate.net/publication/317447281_Defining_Indicators_for_Risk_Assessment_in_Software_Development_Projects
https://www.researchgate.net/publication/317447281_Defining_Indicators_for_Risk_Assessment_in_Software_Development_Projects
https://www.researchgate.net/publication/338171666_RISK_MANAGEMENT_MODELS
https://www.researchgate.net/publication/338171666_RISK_MANAGEMENT_MODELS
http://dx.doi.org/10.1016/j.infsof.2020.106497
mailto:mariia.liashkevych@lnu.edu.ua

M. Lyashkevych, I. Rohatskyi, V. Lyashkevych, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

71

активності та процеси в одній таксономі, що дозволяє легко ідентифікувати ризики на основі

відомих вимог до програмного забезпечення та навпаки.

Створена таксономія була підтверджена деякими експертами предметної області.

ChatGPT4 є одним із експертів, які розраховують на можливості великих мовних моделей

для вирішення завдань узагальнення та класифікації тексту. Для автоматичного

опрацювання запропонованої таксономії засобами великих мовних моделей всі поняття

таксономії ризиків маю відповідний текстовий опис у загальному словнику понять.

Практичні результати таксономії ризиків є надзвичайно важливими, оскільки ми уникаємо

галюцинацій великих мовних моделей і застосовуємо керований підхід на основі таксономії

до швидкої розробки для управління ризиками.

Ключові слова: ризики розробки програмного забезпечення, таксономія ризиків,

розпізнавання ризиків, виявлення ризиків, таксономія, вимоги до програмного забезпечення,

аналіз вимог.

The article was received by the editorial office on 22.07.2024.

Accepted for publication on 01.08.2024.

