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The performance analysis of client-side and server-side machine learning technologies is 

important for understanding the optimal way to model optimization. The study aims to analyze the 

training time of the model, taking into account parameters such as the number of likes, comments 

and shares according to the text of a post in social networks. Natural language processing (NLP) 

requires significant computing power, so it is important to determine whether it is more efficient to 

train models on client devices or on servers. TensorFlow for JavaScript can provide client-side 

computation, while Python can use server-side resources. The obtained results confirm that the 

models in web machine learning require optimization and are slower than in the server 

implementation, taking into account the training execution time. Therefore, the size of the data is 

important for effective machine learning of the model in client-side computing. 

Keywords: machine learning, client-side computing, server-side computing, model training, text 

analysis, natural language processing, TensorFlow, learning time, social networks. 
 

Overview 

The relevance of using machine learning on the client and server side is constantly 

increasing in the modern information environment, where speed, efficiency and data protection 

are becoming key priorities. The latest trends in this area indicate the growing popularity of 

client-side machine learning using technologies such as TensorFlow for JavaScript and 

TensorFlow Lite to perform computations directly on user devices such as mobile phones and 

IoT devices. This allows you to provide personalized and fast solutions, reducing the 

dependence on server resources and ensuring greater data privacy. On the other hand, server-

based machine learning remains popular in large enterprises and data centers where significant 

computing resources are available. The use of servers allows working with large volumes of 

data and complex models, ensuring high learning and processing speed. 

Benefits of client-side machine learning include reduced load on servers, increased speed, 

and independence from the Internet. At the same time, its disadvantages are the limited 

computing capabilities of devices and the limited amount of data available for training. 

Server-based machine learning has great power and scalability but requires significant 

computing resources and can cause data privacy issues. However, servers are still a necessary 

element for processing large amounts of data and performing complex calculations. In general, 

both approaches have their own unique advantages and disadvantages, and the choice between 

them depends on the specific needs, constraints, and requirements of the project. However, the 
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trend of increasing the value of client machine learning indicates the prospects of this direction 

of development in the future. 

Machine learning (ML) in web applications is rapidly evolving, enhancing user 

experiences and extracting meaningful insights from vast data. TensorFlow.js allows 

developers to build and run ML models in JavaScript directly in the browser, enabling real-

time processing, improved accessibility, and enhanced security. Description of basic flows 

building ML model and official documentation [1, 2] highlight these advantages. At the same 

time, in paper [3] emphasize the ease of deploying ML models in web environments using 

TensorFlow.js. Authors in [4] discusses broad ML applications, including content 

recommendation, sentiment analysis, and user behavior prediction, highlighting their real-

world relevance. This means that despite ready-made implementations, there is a need for 

improved models for their specifications for each task separately. 

In work [5] is showing how these techniques enhance content creation and management 

with reviewing ML approaches in web-based composition. It shows the practical aspects of this 

subject, which can be interesting for analytics and marketing.  

The models of information collection, processing and analysis are based on the work done 

in previous works [7–9]. It is investigation of ML's role in analyzing news and social media 

posts, focusing on sentiment analysis to interpret public opinion and trends in [10] analyze 

consumer behavior using ML algorithms, helping businesses understand customers better and 

tailor their offerings. 

User behavior analytics is another critical application, as it is described in [11] by 

combining ML with eye-tracking data to gain deeper insights into web user behaviors. 

Similarly, in [12, 13] survey clustering algorithms and ML models for user and entity behavior 

analytics, emphasizing the importance of segmenting users based on behavior. In articles [14, 

15] highlight the use of ML techniques to predict user preferences, enhancing content and 

service personalization. In article [16] focus on using data analytics and ML to distinguish 

between malicious and legitimate users, enhancing web application security.  

Summarizing this sufficient list of studies, it can be assumed that a constant search for 

solutions for the problem of user behavior analysis is taking place. As a result, it is worth 

considering the possibilities for finding alternative ways and optimizing such software 

solutions (in particular, in web mode). As ML research and development progress, innovative 

applications will continue to enhance user experience and operational efficiency in web 

environments. 

 

Performance evaluation methods and features of Tensorflow implementations 

Regardless of the type of program implementation and, accordingly, the programming 

language (on the server or web), the following steps for program implementation can be 

formulated: 

1. Downloads data from the “uba.json” file using an asynchronous fetch request.  

2. Executes the extractData function for each object in the data array  

3. Filters the data, removing objects where one of the fields (x or y) has a null value.  

4. Displays the original data on a graph using the plot function.  

5. Shuffles the data to prepare it for model training.  

6. Converts input data into tensors and normalizes them.  

7. Creates a TensorFlow model using two dense (fully connected) layers.  

8. Compiles the model, specifying the losses and the optimizer.  

9. Trains the model using the trainModel function.  



I. Mysiuk, R. Shuvar 

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27 

36 

10. Restores normalized data to raw data and displays it on a graph.  

11. Shows the prediction results on a graph compared to the original data.  

Regarding the significant difference between the Python and JavaScript versions of 

TensorFlow, the main difference is that TensorFlow.js is designed specifically for the web 

environment, so it has its own architecture and features tailored to work in the browser. In 

other respects, the functionality is similar, and both versions of the library allow you to 

conveniently work with ML models. 

Features of using TensorFlow.js are the ability to perform ML directly in the web 

environment, without the need to install specialized libraries. This makes it easier and faster to 

develop web applications with intelligent functions such as pattern recognition or speech 

processing.  

TensorFlow.js is commonly used in JavaScript to train models in the browser or on the 

server. We are used the performance.now() method to measure time, but it depends on the 

context of use.  

 
Fig. 2. The main components of a web page with visualization of the learning process with 

Tensorflow.js 

 

Returning to the input data that was used to train the model, it includes the numerical 

values of the number of likes, shares, comments and the text of the post on the Facebook social 

network collected from newspaper news in the same way as it is described in [8, 9]. The 

"uba.json" file is an array of values that has the following structure: 

{"NumberOfLikes": 795, "NumberOfComments": 58, "NumberOfShares": 7, "TextInPost": "Taquería El Califa de 

León, a taco stand in Mexico City, earned a Michelin star this month. It was “incredible,” said Arturo Rivera Martínez, 

who has worked there for 20 years, because “in the end, it’s a taquería and a very simple taco” that earned it." } 

On Fig. 2 shows two graphs, which allows you to analyze all interactions in ML model 

preparation. To visualize the process of ML on the web page, it is used: 

• tfvis.render.scatterplot which is a function from the TensorFlow.js Visualization 

library (TF.js Vis) that is designed to create a scatter plot for data visualization. This 

feature allows you to display data quickly and easily as points on a graph, where each 

point is represented by two or more values (such as coordinates). 
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• tfvis.show.fitCallbacks which is a function from the TensorFlow.js Visualization 

(TF.js Vis) library that allows you to display graphs of metrics while training a model 

using TensorFlow.js. This function creates an object with callbacks that automatically 

update the metric visualizations (in this case loss) during each epoch of model 

training. 

Batch size is the number of training examples utilized in one iteration of the model's 

training process. The batch size parameter indicates the number of training samples the model 

processes before updating its internal parameters (weights). Decreasing the batch size and 

increasing the number of epochs did not significantly affect the loss values for larger model 

sizes, so Table 1 shows a batch size of 10 and a number of epochs of 50. 

 In this case, a batch size of 10 means that the model will look at 10 training examples at a 

time, calculate the error for those 10 examples, and then adjust the model parameters 

accordingly. 50 epochs provide enough opportunities for the model to learn and adjust its 

parameters based on the training data. This value is chosen based on prior experiments or 

benchmarks showing that this number of epochs typically results in good performance without 

overfitting. More epochs generally mean longer training time. The model will go through the 

dataset multiple times, learning and adjusting the weights in each pass. 

To measure the training time of a model with different amounts of data, different values 

of parameters batch size and epochs, similar methods are used in Python and JavaScript, but 

taking into account the peculiarities of each language. In Python, you can use the TensorFlow 

library, which has the tf.keras module, which provides a fit() method to train the model. To 

measure training time, you can use the time or timeit module, as shown in the previous 

example. The batch size and epochs parameters are passed directly to the fit() method. 
 

Table. 1. The results of the learning loss value for different model sizes are obtained 

Model size Loss 

100 0.046 

1000 0.030 

2000 0.023 

5000 0.022 

 

There is a slight difference in the code implementation in the JavaScript and Python 

programming languages, as shown in Fig. 3 and Fig. 4.  

 

 
Fig. 3. Asynchronous Function to Train the Model in JavaScript 
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In described data processing pipeline, we utilize functions like “extract_data” and 

“remove_errors” to meticulously handle JSON data, ensuring accurate extraction while 

filtering out records with missing values. Leveraging Matplotlib, the “plot_data” function 

facilitates the creation of intuitive scatter plots, offering comparative insights between original 

and predicted datasets. Orchestrating these operations, the “run_tf” function serves as the 

backbone, seamlessly managing data loading, normalization, model creation, training as it is 

shown in Fig.4, prediction, and visualization to enable informed decision-making and 

actionable insights. 

 

 
Fig. 4. Part of code to train model in Python 

 

In the same way as for JavaScript in Fig. 2, results are visualized in the software 

implementation of server calculations in Python in Fig. 5. The difference is only in the tools 

and libraries, which have a certain style and minor customization features. 

 

 
Fig. 5. The main components of a web page with visualization of the learning process 

with Tensorflow in Python 

 

Summarizing the stage of software implementation, we can conclude that there is no 

particularly fundamental difference during development. In this context, it is important not to 

take into account the time of visualization of the results on the chart, because this time may 

depend directly on the implementation of the chart. 

 

Comparative analysis of the efficiency of using Tensorflow on the client and server 

side  

After implementing the training of the model, we move on to evaluating the numerical 

and functional indicators of such parameters. In particular, the efficiency in terms of the value 

of the model training time is considered in accordance with the size of the model. A 
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comparative analysis of the efficiency of using TensorFlow on the client and server side, along 

with the training time of the model is shown in Table 2.  
 

Table. 2. Training time for client-based and server-based classification using Tensorflow 

Aspect Client-side TensorFlow 

(JavaScript) 

Server-side TensorFlow 

(Python) 

Training Time Typically, shorter due to 

client-side resources, but may 

be limited by client hardware 

capabilities. 

Generally faster, especially 

for large-scale models and 

datasets, due to access to 

powerful server hardware and 

potential for parallelization. 

Hardware Requirements Relies on client hardware, 

potentially limited by 

computational capabilities. 

Access to powerful server 

hardware, including GPUs or 

TPUs, for accelerated 

training. 

Latency Low latency for local 

execution, suitable for real-

time or interactive 

applications. 

Higher latency for server 

requests, but suitable for 

batch processing or offline 

tasks. 

Accessibility Easily accessible to users 

with web browsers, no need 

for server infrastructure. 

Requires server infrastructure 

for deployment and access. 

Scalability Limited scalability due to 

client-side constraints and 

potential for resource 

exhaustion.  

Highly scalable, with 

potential for parallelization 

and distributed computing. 

Privacy and Security Data remains on the client 

side, potentially enhancing 

privacy and security. 

Data transmission to the 

server introduces potential 

privacy and security 

concerns. 
 

Table 2 provides a comparative overview of various aspects related to the efficiency of 

using TensorFlow on the client and server side, including training time, hardware 

requirements, accessibility, scalability, latency, and privacy/security considerations. The choice 

between client-side and server-side TensorFlow depends on specific requirements, such as 

performance goals, available resources, and privacy concerns. 
 

Table. 3. Training time for client-based and server-based classification using Tensorflow 

Model size Client-based classification 

training time using 

Tensoflow, s 

Server-based classification 

training time using 

Tensoflow, s 

100 2.17  2.47  

1000 12.23 7.59  

2000 23.90 15.49  

5000 58.08 41.34  
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The results may be determined by the features of the device, namely its computing 

capabilities. All calculations were performed on HP Pavilion (Intel Core i5-1335U, RAM 16 

Gb). 

Small Dataset (e.g., <100 samples): Training using client-side TensorFlow (JavaScript) is 

generally faster due to the utilization of client-side resources and the potential for 

parallelization. On the other hand, server-side TensorFlow (Python) achieves faster training 

times owing to access to powerful server hardware.  

Medium Dataset (e.g., 100 - 1000 samples): The performance between client-side and 

server-side TensorFlow is comparable, but client-side training may be limited by the 

computational capabilities of client hardware. Server-side TensorFlow typically achieves faster 

training times due to optimized server-side processing and potential parallelization.  

Large Dataset (e.g., >1000 samples): Training time on the client-side TensorFlow tends 

to be longer due to potential resource limitations on client devices. Conversely, server-side 

TensorFlow generally achieves faster training times, especially with distributed computing and 

GPU/TPU acceleration. 

Client-side TensorFlow exhibits limited scalability due to constraints inherent to client-

side execution and the potential for resource exhaustion. In contrast, server-side TensorFlow is 

highly scalable, offering potential for parallelization and distributed computing.  

Server-side TensorFlow benefits from access to powerful server hardware, including 

GPUs or TPUs, for accelerated training. In contrast client-side TensorFlow relies on the 

computational capabilities of client hardware, which may be limited.  

Client-side TensorFlow has limited optimization options due to its execution 

environment. Conversely, server-side TensorFlow offers a wide range of optimization 

techniques, including distributed training and hardware acceleration. 

 

Conclusion  

In this work, a study of the learning time on the client and server side for Tensorflow is 

performed. The training time for client-based and server-based classification using TensorFlow 

can vary depending on several factors, including the complexity of the model, the size of the 

dataset, the hardware resources available, and the optimization techniques applied. 

For client-based classification using TensorFlow.js (running in the browser), the training 

time might generally be shorter compared to server-based classification due to the utilization of 

client-side resources. However, it's essential to consider that client-side training might be 

limited by the computational capabilities of the user's device, potentially leading to longer 

training times for more complex models or larger datasets.  

On the other hand, server-based classification using TensorFlow in Python (running on a 

server) can benefit from more powerful hardware resources leading to potentially faster 

training times, especially for large-scale models and datasets. Additionally, server-based 

training allows for parallelization and distributed computing, which can further optimize 

training time for demanding tasks. The obtained results confirm that the approach with 

calculations on the client side is quite effective on a small amount of data, but is less accurate 

on a large amount of data. 

Overall, while client-based classification might offer more flexibility and accessibility, 

server-based classification generally provides higher performance and scalability, especially 

for computationally intensive tasks. The choice between client-based and server-based 

classification should be based on the specific requirements and constraints of the application, 

including the available hardware resources, latency considerations, and privacy concerns. 
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Аналіз продуктивності технологій машинного навчання на стороні клієнта та сервера 

важливий для розуміння оптимального способу оптимізації моделі. Дослідження має на 

меті проаналізувати час навчання моделі з урахуванням таких параметрів, як кількість 

вподобань, коментарів і поширень відповідно до тексту публікації в соціальних мережах. 

Обробка природної мови (NLP) вимагає значної обчислювальної потужності, тому важливо 

визначити, чи ефективніше навчати моделі на клієнтських пристроях чи на серверах. 

TensorFlow для JavaScript може забезпечити обчислення на стороні клієнта, тоді як Python 

може використовувати ресурси на стороні сервера. Отримані результати підтверджують, 

що моделі в веб додатках з машинним навчанням потребують оптимізації та є 

повільнішими, ніж у серверній реалізації, враховуючи час виконання навчання. Тому 

розмір даних важливий для ефективного машинного навчання моделі в обчисленнях на 

стороні клієнта. 

Використання на клієнтській стороні, зокрема за допомогою TensorFlow для JavaScript, 

може виконувати навчання моделей у проте навчання проводити краше на окремих 

обчислюваних ресурсах. Використання серверних ресурсів, які базуються на Python, також 

має свої переваги, особливо в обробці великих обсягів даних або складних моделей, проте 

деяка втрата часу може спостерігатися під час обміну даних (запит-відповідь). 

Важливою частиною цього дослідження є візуалізація результатів в режимі реального 

часу. В перспективі дослідження можна розширити на повноцінних конвеєр зчитування, 

опрацювання та аналізу даних з реалізацію систем обробки природної мови у широкому 

спектрі застосувань, від соціальних мереж до підприємств. 

Ключові слова: машинне навчання, клієнтська сторона обчислення, серверна сторона 

обчислення, аналіз тексту, обробка природної мови, TensorFlow, час навчання, соціальні 

мережі. 
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