
ISSN 2224-087X. Електроніка та інформаційні технології. 2024. Випуск 27. С. 34–42

Electronics and information technologies. 2024. Issue 27. P. 34–42

© Mysiuk I., Shuvar R. 2024

УДК 004.9 DOI: https://doi.org/10.30970/eli.27.3

COMPARATIVE ANALYSIS THE PERFORMANCE OF CLIENT-SIDE

AND SERVER-SIDE MACHINE LEARNING TECHNOLOGIES

I. Mysiuk, R. Shuvar

Department of System Design,

Ivan Franko National University of Lviv

50 Drahomanova St., UA-79005 Lviv, Ukraine

iruna.musyk8a@gmail.com

The performance analysis of client-side and server-side machine learning technologies is

important for understanding the optimal way to model optimization. The study aims to analyze the

training time of the model, taking into account parameters such as the number of likes, comments

and shares according to the text of a post in social networks. Natural language processing (NLP)

requires significant computing power, so it is important to determine whether it is more efficient to

train models on client devices or on servers. TensorFlow for JavaScript can provide client-side

computation, while Python can use server-side resources. The obtained results confirm that the

models in web machine learning require optimization and are slower than in the server

implementation, taking into account the training execution time. Therefore, the size of the data is

important for effective machine learning of the model in client-side computing.

Keywords: machine learning, client-side computing, server-side computing, model training, text

analysis, natural language processing, TensorFlow, learning time, social networks.

Overview

The relevance of using machine learning on the client and server side is constantly

increasing in the modern information environment, where speed, efficiency and data protection

are becoming key priorities. The latest trends in this area indicate the growing popularity of

client-side machine learning using technologies such as TensorFlow for JavaScript and

TensorFlow Lite to perform computations directly on user devices such as mobile phones and

IoT devices. This allows you to provide personalized and fast solutions, reducing the

dependence on server resources and ensuring greater data privacy. On the other hand, server-

based machine learning remains popular in large enterprises and data centers where significant

computing resources are available. The use of servers allows working with large volumes of

data and complex models, ensuring high learning and processing speed.

Benefits of client-side machine learning include reduced load on servers, increased speed,

and independence from the Internet. At the same time, its disadvantages are the limited

computing capabilities of devices and the limited amount of data available for training.

Server-based machine learning has great power and scalability but requires significant

computing resources and can cause data privacy issues. However, servers are still a necessary

element for processing large amounts of data and performing complex calculations. In general,

both approaches have their own unique advantages and disadvantages, and the choice between

them depends on the specific needs, constraints, and requirements of the project. However, the

https://doi.org/10.30970/eli.27.3
mailto:iruna.musyk8a@gmail.com

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

35

trend of increasing the value of client machine learning indicates the prospects of this direction

of development in the future.

Machine learning (ML) in web applications is rapidly evolving, enhancing user

experiences and extracting meaningful insights from vast data. TensorFlow.js allows

developers to build and run ML models in JavaScript directly in the browser, enabling real-

time processing, improved accessibility, and enhanced security. Description of basic flows

building ML model and official documentation [1, 2] highlight these advantages. At the same

time, in paper [3] emphasize the ease of deploying ML models in web environments using

TensorFlow.js. Authors in [4] discusses broad ML applications, including content

recommendation, sentiment analysis, and user behavior prediction, highlighting their real-

world relevance. This means that despite ready-made implementations, there is a need for

improved models for their specifications for each task separately.

In work [5] is showing how these techniques enhance content creation and management

with reviewing ML approaches in web-based composition. It shows the practical aspects of this

subject, which can be interesting for analytics and marketing.

The models of information collection, processing and analysis are based on the work done

in previous works [7–9]. It is investigation of ML's role in analyzing news and social media

posts, focusing on sentiment analysis to interpret public opinion and trends in [10] analyze

consumer behavior using ML algorithms, helping businesses understand customers better and

tailor their offerings.

User behavior analytics is another critical application, as it is described in [11] by

combining ML with eye-tracking data to gain deeper insights into web user behaviors.

Similarly, in [12, 13] survey clustering algorithms and ML models for user and entity behavior

analytics, emphasizing the importance of segmenting users based on behavior. In articles [14,

15] highlight the use of ML techniques to predict user preferences, enhancing content and

service personalization. In article [16] focus on using data analytics and ML to distinguish

between malicious and legitimate users, enhancing web application security.

Summarizing this sufficient list of studies, it can be assumed that a constant search for

solutions for the problem of user behavior analysis is taking place. As a result, it is worth

considering the possibilities for finding alternative ways and optimizing such software

solutions (in particular, in web mode). As ML research and development progress, innovative

applications will continue to enhance user experience and operational efficiency in web

environments.

Performance evaluation methods and features of Tensorflow implementations

Regardless of the type of program implementation and, accordingly, the programming

language (on the server or web), the following steps for program implementation can be

formulated:

1. Downloads data from the “uba.json” file using an asynchronous fetch request.

2. Executes the extractData function for each object in the data array

3. Filters the data, removing objects where one of the fields (x or y) has a null value.

4. Displays the original data on a graph using the plot function.

5. Shuffles the data to prepare it for model training.

6. Converts input data into tensors and normalizes them.

7. Creates a TensorFlow model using two dense (fully connected) layers.

8. Compiles the model, specifying the losses and the optimizer.

9. Trains the model using the trainModel function.

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

36

10. Restores normalized data to raw data and displays it on a graph.

11. Shows the prediction results on a graph compared to the original data.

Regarding the significant difference between the Python and JavaScript versions of

TensorFlow, the main difference is that TensorFlow.js is designed specifically for the web

environment, so it has its own architecture and features tailored to work in the browser. In

other respects, the functionality is similar, and both versions of the library allow you to

conveniently work with ML models.

Features of using TensorFlow.js are the ability to perform ML directly in the web

environment, without the need to install specialized libraries. This makes it easier and faster to

develop web applications with intelligent functions such as pattern recognition or speech

processing.

TensorFlow.js is commonly used in JavaScript to train models in the browser or on the

server. We are used the performance.now() method to measure time, but it depends on the

context of use.

Fig. 2. The main components of a web page with visualization of the learning process with

Tensorflow.js

Returning to the input data that was used to train the model, it includes the numerical

values of the number of likes, shares, comments and the text of the post on the Facebook social

network collected from newspaper news in the same way as it is described in [8, 9]. The

"uba.json" file is an array of values that has the following structure:

{"NumberOfLikes": 795, "NumberOfComments": 58, "NumberOfShares": 7, "TextInPost": "Taquería El Califa de

León, a taco stand in Mexico City, earned a Michelin star this month. It was “incredible,” said Arturo Rivera Martínez,

who has worked there for 20 years, because “in the end, it’s a taquería and a very simple taco” that earned it." }

On Fig. 2 shows two graphs, which allows you to analyze all interactions in ML model

preparation. To visualize the process of ML on the web page, it is used:

• tfvis.render.scatterplot which is a function from the TensorFlow.js Visualization

library (TF.js Vis) that is designed to create a scatter plot for data visualization. This

feature allows you to display data quickly and easily as points on a graph, where each

point is represented by two or more values (such as coordinates).

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

37

• tfvis.show.fitCallbacks which is a function from the TensorFlow.js Visualization

(TF.js Vis) library that allows you to display graphs of metrics while training a model

using TensorFlow.js. This function creates an object with callbacks that automatically

update the metric visualizations (in this case loss) during each epoch of model

training.

Batch size is the number of training examples utilized in one iteration of the model's

training process. The batch size parameter indicates the number of training samples the model

processes before updating its internal parameters (weights). Decreasing the batch size and

increasing the number of epochs did not significantly affect the loss values for larger model

sizes, so Table 1 shows a batch size of 10 and a number of epochs of 50.

 In this case, a batch size of 10 means that the model will look at 10 training examples at a

time, calculate the error for those 10 examples, and then adjust the model parameters

accordingly. 50 epochs provide enough opportunities for the model to learn and adjust its

parameters based on the training data. This value is chosen based on prior experiments or

benchmarks showing that this number of epochs typically results in good performance without

overfitting. More epochs generally mean longer training time. The model will go through the

dataset multiple times, learning and adjusting the weights in each pass.

To measure the training time of a model with different amounts of data, different values

of parameters batch size and epochs, similar methods are used in Python and JavaScript, but

taking into account the peculiarities of each language. In Python, you can use the TensorFlow

library, which has the tf.keras module, which provides a fit() method to train the model. To

measure training time, you can use the time or timeit module, as shown in the previous

example. The batch size and epochs parameters are passed directly to the fit() method.

Table. 1. The results of the learning loss value for different model sizes are obtained

Model size Loss

100 0.046

1000 0.030

2000 0.023

5000 0.022

There is a slight difference in the code implementation in the JavaScript and Python

programming languages, as shown in Fig. 3 and Fig. 4.

Fig. 3. Asynchronous Function to Train the Model in JavaScript

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

38

In described data processing pipeline, we utilize functions like “extract_data” and

“remove_errors” to meticulously handle JSON data, ensuring accurate extraction while

filtering out records with missing values. Leveraging Matplotlib, the “plot_data” function

facilitates the creation of intuitive scatter plots, offering comparative insights between original

and predicted datasets. Orchestrating these operations, the “run_tf” function serves as the

backbone, seamlessly managing data loading, normalization, model creation, training as it is

shown in Fig.4, prediction, and visualization to enable informed decision-making and

actionable insights.

Fig. 4. Part of code to train model in Python

In the same way as for JavaScript in Fig. 2, results are visualized in the software

implementation of server calculations in Python in Fig. 5. The difference is only in the tools

and libraries, which have a certain style and minor customization features.

Fig. 5. The main components of a web page with visualization of the learning process

with Tensorflow in Python

Summarizing the stage of software implementation, we can conclude that there is no

particularly fundamental difference during development. In this context, it is important not to

take into account the time of visualization of the results on the chart, because this time may

depend directly on the implementation of the chart.

Comparative analysis of the efficiency of using Tensorflow on the client and server

side

After implementing the training of the model, we move on to evaluating the numerical

and functional indicators of such parameters. In particular, the efficiency in terms of the value

of the model training time is considered in accordance with the size of the model. A

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

39

comparative analysis of the efficiency of using TensorFlow on the client and server side, along

with the training time of the model is shown in Table 2.

Table. 2. Training time for client-based and server-based classification using Tensorflow

Aspect Client-side TensorFlow

(JavaScript)

Server-side TensorFlow

(Python)

Training Time Typically, shorter due to

client-side resources, but may

be limited by client hardware

capabilities.

Generally faster, especially

for large-scale models and

datasets, due to access to

powerful server hardware and

potential for parallelization.

Hardware Requirements Relies on client hardware,

potentially limited by

computational capabilities.

Access to powerful server

hardware, including GPUs or

TPUs, for accelerated

training.

Latency Low latency for local

execution, suitable for real-

time or interactive

applications.

Higher latency for server

requests, but suitable for

batch processing or offline

tasks.

Accessibility Easily accessible to users

with web browsers, no need

for server infrastructure.

Requires server infrastructure

for deployment and access.

Scalability Limited scalability due to

client-side constraints and

potential for resource

exhaustion.

Highly scalable, with

potential for parallelization

and distributed computing.

Privacy and Security Data remains on the client

side, potentially enhancing

privacy and security.

Data transmission to the

server introduces potential

privacy and security

concerns.

Table 2 provides a comparative overview of various aspects related to the efficiency of

using TensorFlow on the client and server side, including training time, hardware

requirements, accessibility, scalability, latency, and privacy/security considerations. The choice

between client-side and server-side TensorFlow depends on specific requirements, such as

performance goals, available resources, and privacy concerns.

Table. 3. Training time for client-based and server-based classification using Tensorflow

Model size Client-based classification

training time using

Tensoflow, s

Server-based classification

training time using

Tensoflow, s

100 2.17 2.47

1000 12.23 7.59

2000 23.90 15.49

5000 58.08 41.34

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

40

The results may be determined by the features of the device, namely its computing

capabilities. All calculations were performed on HP Pavilion (Intel Core i5-1335U, RAM 16

Gb).

Small Dataset (e.g., <100 samples): Training using client-side TensorFlow (JavaScript) is

generally faster due to the utilization of client-side resources and the potential for

parallelization. On the other hand, server-side TensorFlow (Python) achieves faster training

times owing to access to powerful server hardware.

Medium Dataset (e.g., 100 - 1000 samples): The performance between client-side and

server-side TensorFlow is comparable, but client-side training may be limited by the

computational capabilities of client hardware. Server-side TensorFlow typically achieves faster

training times due to optimized server-side processing and potential parallelization.

Large Dataset (e.g., >1000 samples): Training time on the client-side TensorFlow tends

to be longer due to potential resource limitations on client devices. Conversely, server-side

TensorFlow generally achieves faster training times, especially with distributed computing and

GPU/TPU acceleration.

Client-side TensorFlow exhibits limited scalability due to constraints inherent to client-

side execution and the potential for resource exhaustion. In contrast, server-side TensorFlow is

highly scalable, offering potential for parallelization and distributed computing.

Server-side TensorFlow benefits from access to powerful server hardware, including

GPUs or TPUs, for accelerated training. In contrast client-side TensorFlow relies on the

computational capabilities of client hardware, which may be limited.

Client-side TensorFlow has limited optimization options due to its execution

environment. Conversely, server-side TensorFlow offers a wide range of optimization

techniques, including distributed training and hardware acceleration.

Conclusion

In this work, a study of the learning time on the client and server side for Tensorflow is

performed. The training time for client-based and server-based classification using TensorFlow

can vary depending on several factors, including the complexity of the model, the size of the

dataset, the hardware resources available, and the optimization techniques applied.

For client-based classification using TensorFlow.js (running in the browser), the training

time might generally be shorter compared to server-based classification due to the utilization of

client-side resources. However, it's essential to consider that client-side training might be

limited by the computational capabilities of the user's device, potentially leading to longer

training times for more complex models or larger datasets.

On the other hand, server-based classification using TensorFlow in Python (running on a

server) can benefit from more powerful hardware resources leading to potentially faster

training times, especially for large-scale models and datasets. Additionally, server-based

training allows for parallelization and distributed computing, which can further optimize

training time for demanding tasks. The obtained results confirm that the approach with

calculations on the client side is quite effective on a small amount of data, but is less accurate

on a large amount of data.

Overall, while client-based classification might offer more flexibility and accessibility,

server-based classification generally provides higher performance and scalability, especially

for computationally intensive tasks. The choice between client-based and server-based

classification should be based on the specific requirements and constraints of the application,

including the available hardware resources, latency considerations, and privacy concerns.

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

41

REFERENCES

[1] Building a simple text classification neural network in TensorFlow.js - Medium [Online].

URL: https://medium.com/@GeorgePerry/finding-intent-to-buy-from-instagram-

comments-with-tensorflow-js-3f764c132be7

[2] TensorFlow for JavaScript - TensorFlow [Online]. URL: https://www.tensorflow.org/js

[3] S. Kletz, M. Bertini, and M. Lux. 2021. Open source column: Deep learning in the

browser: TensorFlow JS. SIGMultimedia Rec. 11, 1, Article 4 (March 2019),

doi: 10.1145/3458462.3458466

[4] Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research

Directions. SN COMPUT. SCI. 2, 160 (2021), doi: 10.1007/s42979-021-00592-x

[5] Y. J. Ekie et al. 2021. Web Based Composition using Machine Learning Approaches: A

Literature Review. In Proceedings of the 4th International Conference on Networking,

Information Systems & Security (NISS '21). Association for Computing Machinery, New

York, NY, USA, Article 48, 1–7, doi: 10.1145/3454127.3457623

[6] M. R. M. V., Rodriguez C., Navarro Depaz, C., Concha, U.R., Pandey B., S. Kharat, R.,

Marappan R. Machine Learning Based Recommendation System for Web-Search

Learning. Telecom 2023, 4, 118-134. https://doi.org/10.3390/telecom4010008

[7] A. Verma, C. Kapoor, A. Sharma and B. Mishra, Web Application Implementation with

Machine Learning, 2021 2nd International Conference on Intelligent Engineering and

Management (ICIEM), London, United Kingdom, 2021, pp. 423-428, doi:

10.1109/ICIEM51511.2021.9445368

[8] Mysiuk I., Mysiuk R., Shuvar R. Collecting and analyzing news from newspaper posts in

Facebook using machine learning. Stuc. intelekt. 2023. Vol. 28, No. 1, P. 147-154, doi:

10.15407/jai2023.01.147

[9] I. Mysiuk, R. Mysiuk, R. Shuvar, V. Yuzevych. Methods of analytics of big data of popular

electronic newspapers on Facebook. Electronics and information technologies 2022. Vol.

19., P. 66–74, doi: 10.30970/eli.19.6

[10] V. Shrirame, J. Sabade, H. Soneta, M. Vijayalakshmi, Consumer Behavior Analytics

using Machine Learning Algorithms, 2020 IEEE International Conference on Electronics,

Computing and Communication Technologies (CONECCT), Bangalore, India, 2020, pp.

1-6, doi: 10.1109/CONECCT50063.2020.9198562

[11] Castilla, D., Del Tejo Catalá, O., Pons, P. et al. Improving the understanding of web user

behaviors through machine learning analysis of eye-tracking data. User Model User-Adap

Inter 34, 293–322 (2024), doi: 10.1007/s11257-023-09373-y

[12] A. Pierpaolo, M. Antonio, M. Alessio. A comprehensive investigation of clustering

algorithms for User and Entity Behavior Analytics. Frontiers in Big Data, Vol.7, 2024

doi: 10.3389/fdata.2024.1375818

[13] Martín A. G., A. Fernández-Isabel, I. Martín de Diego, and M. Beltrán, A survey for user

behavior analysis based on machine learning techniques: current models and applications,

Applied Intelligence, vol. 51, no. 8, pp. 6029–6055, Jan. 2021, doi: 10.1007/s10489-020-

02160-x.

https://medium.com/@GeorgePerry/finding-intent-to-buy-from-instagram-comments-with-tensorflow-js-3f764c132be7
https://medium.com/@GeorgePerry/finding-intent-to-buy-from-instagram-comments-with-tensorflow-js-3f764c132be7
https://www.tensorflow.org/js
https://doi.org/10.1145/3458462.3458466
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1145/3454127.3457623
https://doi.org/10.3390/telecom4010008
https://doi.org/10.1109/ICIEM51511.2021.9445368
https://doi.org/10.15407/jai2023.01.147
https://doi.org/10.30970/eli.19.6
https://doi.org/10.1109/CONECCT50063.2020.9198562
https://doi.org/10.1007/s11257-023-09373-y
https://doi.org/10.3389/fdata.2024.1375818
https://doi.org/10.1007/s10489-020-02160-x
https://doi.org/10.1007/s10489-020-02160-x

I. Mysiuk, R. Shuvar

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27

42

[14] M. Callara, P. Wira, User Behavior Analysis with Machine Learning Techniques in

Cloud Computing Architectures, 2018 International Conference on Applied Smart

Systems (ICASS), Nov. 2018, doi: 10.1109/icass.2018.8651961

[15] J. Moon, Y. Kim, S. Rho, User Behavior Analytics with Machine Learning for Household

Electricity Demand Forecasting, 2022 International Conference on Platform Technology

and Service (PlatCon), Aug. 2022, doi: 10.1109/platcon55845.2022.9932037

[16] R. Ranjan, S. S. Kumar, User behaviour analysis using data analytics and machine

learning to predict malicious user versus legitimate user, High-Confidence Computing,

vol. 2, no. 1, p. 100034, Mar. 2022, doi: 10.1016/j.hcc.2021.100034

ПОРІВНЯЛЬНИЙ АНАЛІЗ ПРОДУКТИВНОСТІ ТЕХНОЛОГІЙ МАШИННОГО

НАВЧАННЯ НА СТОРОНІ КЛІЄНТА ТА СЕРВЕРА

І. Мисюк, Р. Шувар

Кафедра системного проектування,

Львівський національний університет імені Івана Франка,

вул.Драгоманова, 50, м.Львів, 79005, Україна

iruna.musyk8a@gmail.com

Аналіз продуктивності технологій машинного навчання на стороні клієнта та сервера

важливий для розуміння оптимального способу оптимізації моделі. Дослідження має на

меті проаналізувати час навчання моделі з урахуванням таких параметрів, як кількість

вподобань, коментарів і поширень відповідно до тексту публікації в соціальних мережах.

Обробка природної мови (NLP) вимагає значної обчислювальної потужності, тому важливо

визначити, чи ефективніше навчати моделі на клієнтських пристроях чи на серверах.

TensorFlow для JavaScript може забезпечити обчислення на стороні клієнта, тоді як Python

може використовувати ресурси на стороні сервера. Отримані результати підтверджують,

що моделі в веб додатках з машинним навчанням потребують оптимізації та є

повільнішими, ніж у серверній реалізації, враховуючи час виконання навчання. Тому

розмір даних важливий для ефективного машинного навчання моделі в обчисленнях на

стороні клієнта.

Використання на клієнтській стороні, зокрема за допомогою TensorFlow для JavaScript,

може виконувати навчання моделей у проте навчання проводити краше на окремих

обчислюваних ресурсах. Використання серверних ресурсів, які базуються на Python, також

має свої переваги, особливо в обробці великих обсягів даних або складних моделей, проте

деяка втрата часу може спостерігатися під час обміну даних (запит-відповідь).

Важливою частиною цього дослідження є візуалізація результатів в режимі реального

часу. В перспективі дослідження можна розширити на повноцінних конвеєр зчитування,

опрацювання та аналізу даних з реалізацію систем обробки природної мови у широкому

спектрі застосувань, від соціальних мереж до підприємств.

Ключові слова: машинне навчання, клієнтська сторона обчислення, серверна сторона

обчислення, аналіз тексту, обробка природної мови, TensorFlow, час навчання, соціальні

мережі.

The article was received by the editorial office on 18.06.2024.

Accepted for publication on 01.07.2024.

https://doi.org/10.1109/icass.2018.8651961
https://doi.org/10.1109/platcon55845.2022.9932037
https://doi.org/10.1016/j.hcc.2021.100034
mailto:iruna.musyk8a@gmail.com

