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The performance analysis of client-side and server-side machine learning technologies is
important for understanding the optimal way to model optimization. The study aims to analyze the
training time of the model, taking into account parameters such as the number of likes, comments
and shares according to the text of a post in social networks. Natural language processing (NLP)
requires significant computing power, so it is important to determine whether it is more efficient to
train models on client devices or on servers. TensorFlow for JavaScript can provide client-side
computation, while Python can use server-side resources. The obtained results confirm that the
models in web machine learning require optimization and are slower than in the server
implementation, taking into account the training execution time. Therefore, the size of the data is
important for effective machine learning of the model in client-side computing.
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Overview

The relevance of using machine learning on the client and server side is constantly
increasing in the modern information environment, where speed, efficiency and data protection
are becoming key priorities. The latest trends in this area indicate the growing popularity of
client-side machine learning using technologies such as TensorFlow for JavaScript and
TensorFlow Lite to perform computations directly on user devices such as mobile phones and
IoT devices. This allows you to provide personalized and fast solutions, reducing the
dependence on server resources and ensuring greater data privacy. On the other hand, server-
based machine learning remains popular in large enterprises and data centers where significant
computing resources are available. The use of servers allows working with large volumes of
data and complex models, ensuring high learning and processing speed.

Benefits of client-side machine learning include reduced load on servers, increased speed,
and independence from the Internet. At the same time, its disadvantages are the limited
computing capabilities of devices and the limited amount of data available for training.

Server-based machine learning has great power and scalability but requires significant
computing resources and can cause data privacy issues. However, servers are still a necessary
element for processing large amounts of data and performing complex calculations. In general,
both approaches have their own unique advantages and disadvantages, and the choice between
them depends on the specific needs, constraints, and requirements of the project. However, the
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trend of increasing the value of client machine learning indicates the prospects of this direction
of development in the future.

Machine learning (ML) in web applications is rapidly evolving, enhancing user
experiences and extracting meaningful insights from vast data. TensorFlow.js allows
developers to build and run ML models in JavaScript directly in the browser, enabling real-
time processing, improved accessibility, and enhanced security. Description of basic flows
building ML model and official documentation [1, 2] highlight these advantages. At the same
time, in paper [3] emphasize the ease of deploying ML models in web environments using
TensorFlow.js. Authors in [4] discusses broad ML applications, including content
recommendation, sentiment analysis, and user behavior prediction, highlighting their real-
world relevance. This means that despite ready-made implementations, there is a need for
improved models for their specifications for each task separately.

In work [5] is showing how these techniques enhance content creation and management
with reviewing ML approaches in web-based composition. It shows the practical aspects of this
subject, which can be interesting for analytics and marketing.

The models of information collection, processing and analysis are based on the work done
in previous works [7-9]. It is investigation of ML's role in analyzing news and social media
posts, focusing on sentiment analysis to interpret public opinion and trends in [10] analyze
consumer behavior using ML algorithms, helping businesses understand customers better and
tailor their offerings.

User behavior analytics is another critical application, as it is described in [11] by
combining ML with eye-tracking data to gain deeper insights into web user behaviors.
Similarly, in [12, 13] survey clustering algorithms and ML models for user and entity behavior
analytics, emphasizing the importance of segmenting users based on behavior. In articles [14,
15] highlight the use of ML techniques to predict user preferences, enhancing content and
service personalization. In article [16] focus on using data analytics and ML to distinguish
between malicious and legitimate users, enhancing web application security.

Summarizing this sufficient list of studies, it can be assumed that a constant search for
solutions for the problem of user behavior analysis is taking place. As a result, it is worth
considering the possibilities for finding alternative ways and optimizing such software
solutions (in particular, in web mode). As ML research and development progress, innovative
applications will continue to enhance user experience and operational efficiency in web
environments.

Performance evaluation methods and features of Tensorflow implementations
Regardless of the type of program implementation and, accordingly, the programming
language (on the server or web), the following steps for program implementation can be
formulated:
Downloads data from the “uba.json” file using an asynchronous fetch request.
Executes the extractData function for each object in the data array
Filters the data, removing objects where one of the fields (x or y) has a null value.
Displays the original data on a graph using the plot function.
Shuffles the data to prepare it for model training.
Converts input data into tensors and normalizes them.
Creates a TensorFlow model using two dense (fully connected) layers.
Compiles the model, specifying the losses and the optimizer.
Trains the model using the trainModel function.
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10. Restores normalized data to raw data and displays it on a graph.

11. Shows the prediction results on a graph compared to the original data.

Regarding the significant difference between the Python and JavaScript versions of
TensorFlow, the main difference is that TensorFlow.js is designed specifically for the web
environment, so it has its own architecture and features tailored to work in the browser. In
other respects, the functionality is similar, and both versions of the library allow you to
conveniently work with ML models.

Features of using TensorFlow.js are the ability to perform ML directly in the web
environment, without the need to install specialized libraries. This makes it easier and faster to
develop web applications with intelligent functions such as pattern recognition or speech
processing.

TensorFlow.js is commonly used in JavaScript to train models in the browser or on the
server. We are used the performance.now() method to measure time, but it depends on the
context of use.
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Fig. 2. The main components of a web page with visualization of the learning process with
Tensorflow.js

Returning to the input data that was used to train the model, it includes the numerical
values of the number of likes, shares, comments and the text of the post on the Facebook social
network collected from newspaper news in the same way as it is described in [8, 9]. The
"uba.json" file is an array of values that has the following structure:

{"NumberOfLikes": 795, "NumberOfComments": 58, "NumberOfShares": 7, "TextInPost": "Taqueria El Califa de

Ledn, a taco stand in Mexico City, earned a Michelin star this month. It was “incredible,” said Arturo Rivera Martinez,
who has worked there for 20 years, because “in the end, it’s a taqueria and a very simple taco” that earned it." }

On Fig. 2 shows two graphs, which allows you to analyze all interactions in ML model

preparation. To visualize the process of ML on the web page, it is used:

o tfvis.render.scatterplot which is a function from the TensorFlow.js Visualization
library (TF.js Vis) that is designed to create a scatter plot for data visualization. This
feature allows you to display data quickly and easily as points on a graph, where each
point is represented by two or more values (such as coordinates).
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o tfvis.show.fitCallbacks which is a function from the TensorFlow.js Visualization
(TF.js Vis) library that allows you to display graphs of metrics while training a model
using TensorFlow.js. This function creates an object with callbacks that automatically
update the metric visualizations (in this case loss) during each epoch of model
training.

Batch size is the number of training examples utilized in one iteration of the model's
training process. The batch size parameter indicates the number of training samples the model
processes before updating its internal parameters (weights). Decreasing the batch size and
increasing the number of epochs did not significantly affect the loss values for larger model
sizes, so Table 1 shows a batch size of 10 and a number of epochs of 50.

In this case, a batch size of 10 means that the model will look at 10 training examples at a
time, calculate the error for those 10 examples, and then adjust the model parameters
accordingly. 50 epochs provide enough opportunities for the model to learn and adjust its
parameters based on the training data. This value is chosen based on prior experiments or
benchmarks showing that this number of epochs typically results in good performance without
overfitting. More epochs generally mean longer training time. The model will go through the
dataset multiple times, learning and adjusting the weights in each pass.

To measure the training time of a model with different amounts of data, different values
of parameters batch size and epochs, similar methods are used in Python and JavaScript, but
taking into account the peculiarities of each language. In Python, you can use the TensorFlow
library, which has the tf.keras module, which provides a fit() method to train the model. To
measure training time, you can use the time or timeit module, as shown in the previous
example. The batch size and epochs parameters are passed directly to the fit() method.

Table. 1. The results of the learning loss value for different model sizes are obtained

Model size Loss
100 0.046
1000 0.030
2000 0.023
5000 0.022

There is a slight difference in the code implementation in the JavaScript and Python
programming languages, as shown in Fig. 3 and Fig. 4.

async function trainModel(model, inputs, labels, surface) {
const batchSize = 10;
const epochs = 50;
const callbacks = tfvis.show.fitCallbacks(surface, ['loss'], {callbacks:['onEpochEnd']});

const startTime = performance.now();
await model.fit(inputs, labels, {
batchSize, epochs, shuffle: true, callbacks: callbacks
i
const endTime = performance.now();

const trainingTime = (endTime - startTime) / 1000;
console.log( Training Time: ${trainingTime.toFixed(2)} seconds’);

Fig. 3. Asynchronous Function to Train the Model in JavaScript
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In described data processing pipeline, we utilize functions like “extract_data” and
“remove_errors” to meticulously handle JSON data, ensuring accurate extraction while
filtering out records with missing values. Leveraging Matplotlib, the “plot_data™ function
facilitates the creation of intuitive scatter plots, offering comparative insights between original
and predicted datasets. Orchestrating these operations, the “run_tf” function serves as the
backbone, seamlessly managing data loading, normalization, model creation, training as it is
shown in Fig.4, prediction, and visualization to enable informed decision-making and
actionable insights.

batch_size = 10

epochs = 50

start_time = time.time()

history = model.fit(norm_inputs, norm_labels, epochs=epochs, batch_size=batch_size, shuffle=True)
end_time = time.time()

training_time = end_time - start_time
print(f"Training Time: {training_time:.2f} seconds")

Fig. 4. Part of code to train model in Python

In the same way as for JavaScript in Fig. 2, results are visualized in the software
implementation of server calculations in Python in Fig. 5. The difference is only in the tools
and libraries, which have a certain style and minor customization features.
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Fig. 5. The main components of a web page with visualization of the learning process
with Tensorflow in Python

Summarizing the stage of software implementation, we can conclude that there is no
particularly fundamental difference during development. In this context, it is important not to
take into account the time of visualization of the results on the chart, because this time may
depend directly on the implementation of the chart.

Comparative analysis of the efficiency of using Tensorflow on the client and server
side

After implementing the training of the model, we move on to evaluating the numerical
and functional indicators of such parameters. In particular, the efficiency in terms of the value
of the model training time is considered in accordance with the size of the model. A
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comparative analysis of the efficiency of using TensorFlow on the client and server side, along
with the training time of the model is shown in Table 2.

Table. 2. Training time for client-based and server-based classification using Tensorflow

Aspect

Client-side TensorFlow
(JavaScript)

Server-side TensorFlow
(Python)

Training Time

Typically, shorter due to
client-side resources, but may
be limited by client hardware

capabilities.

Generally faster, especially
for large-scale models and
datasets, due to access to
powerful server hardware and
potential for parallelization.

Hardware Requirements

Relies on client hardware,
potentially limited by
computational capabilities.

Access to powerful server
hardware, including GPUs or
TPUs, for accelerated
training.

Latency

Low latency for local
execution, suitable for real-
time or interactive
applications.

Higher latency for server
requests, but suitable for
batch processing or offline
tasks.

Accessibility

Easily accessible to users
with web browsers, no need
for server infrastructure.

Requires server infrastructure
for deployment and access.

Scalability

Limited scalability due to
client-side constraints and
potential for resource
exhaustion.

Highly scalable, with
potential for parallelization
and distributed computing.

Privacy and Security

Data remains on the client
side, potentially enhancing
privacy and security.

Data transmission to the
server introduces potential
privacy and security
concerns.

Table 2 provides a comparative overview of various aspects related to the efficiency of
using TensorFlow on the client and server side, including training time, hardware
requirements, accessibility, scalability, latency, and privacy/security considerations. The choice
between client-side and server-side TensorFlow depends on specific requirements, such as
performance goals, available resources, and privacy concerns.

Table. 3. Training time for client-based and server-based classification using Tensorflow

Model size Client-based classification Server-based classification
training time using training time using
Tensoflow, s Tensoflow, s
100 2.17 2.47
1000 12.23 7.59
2000 23.90 15.49
5000 58.08 41.34
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The results may be determined by the features of the device, namely its computing
capabilities. All calculations were performed on HP Pavilion (Intel Core i5-1335U, RAM 16
Gb).

Small Dataset (e.g., <100 samples): Training using client-side TensorFlow (JavaScript) is
generally faster due to the utilization of client-side resources and the potential for
parallelization. On the other hand, server-side TensorFlow (Python) achieves faster training
times owing to access to powerful server hardware.

Medium Dataset (e.g., 100 - 1000 samples): The performance between client-side and
server-side TensorFlow is comparable, but client-side training may be limited by the
computational capabilities of client hardware. Server-side TensorFlow typically achieves faster
training times due to optimized server-side processing and potential parallelization.

Large Dataset (e.g., >1000 samples): Training time on the client-side TensorFlow tends
to be longer due to potential resource limitations on client devices. Conversely, server-side
TensorFlow generally achieves faster training times, especially with distributed computing and
GPU/TPU acceleration.

Client-side TensorFlow exhibits limited scalability due to constraints inherent to client-
side execution and the potential for resource exhaustion. In contrast, server-side TensorFlow is
highly scalable, offering potential for parallelization and distributed computing.

Server-side TensorFlow benefits from access to powerful server hardware, including
GPUs or TPUs, for accelerated training. In contrast client-side TensorFlow relies on the
computational capabilities of client hardware, which may be limited.

Client-side TensorFlow has limited optimization options due to its execution
environment. Conversely, server-side TensorFlow offers a wide range of optimization
techniques, including distributed training and hardware acceleration.

Conclusion

In this work, a study of the learning time on the client and server side for Tensorflow is
performed. The training time for client-based and server-based classification using TensorFlow
can vary depending on several factors, including the complexity of the model, the size of the
dataset, the hardware resources available, and the optimization techniques applied.

For client-based classification using TensorFlow.js (running in the browser), the training
time might generally be shorter compared to server-based classification due to the utilization of
client-side resources. However, it's essential to consider that client-side training might be
limited by the computational capabilities of the user's device, potentially leading to longer
training times for more complex models or larger datasets.

On the other hand, server-based classification using TensorFlow in Python (running on a
server) can benefit from more powerful hardware resources leading to potentially faster
training times, especially for large-scale models and datasets. Additionally, server-based
training allows for parallelization and distributed computing, which can further optimize
training time for demanding tasks. The obtained results confirm that the approach with
calculations on the client side is quite effective on a small amount of data, but is less accurate
on a large amount of data.

Overall, while client-based classification might offer more flexibility and accessibility,
server-based classification generally provides higher performance and scalability, especially
for computationally intensive tasks. The choice between client-based and server-based
classification should be based on the specific requirements and constraints of the application,
including the available hardware resources, latency considerations, and privacy concerns.
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AmHani3 MpoIyKTHBHOCTI TEXHOJIOTiH MAaIIMHHOTO HaBYaHHS Ha CTOPOHI KIII€EHTa Ta cepBepa
BXIIMBHUU JIUI PO3YMIiHHS ONTUMAJIBHOTO CHOCOOY onTuMizarii mojemni. JloCmimKeHHs Ma€e Ha
MeTi MpOaHaTi3yBaTH 4Yac HABYAHHS MOJENi 3 ypaxyBaHHSIM TaKHX IapaMeTpiB, SK KiJbKiCTb
BIO00aHb, KOMEHTAPIB 1 MOMIMPEHB BIIOBIHO JO TEKCTY MyOJiKalil B COLIaNbHUX Mepexax.
O06pobka nmpupoaroi Mmosu (NLP) Bumarae 3HauHOi 00UHCITIOBAIBHOT TIOTYKHOCTI, TOMY Ba)KJIHBO
BU3HAUUTH, YW €(QEKTUBHIIIC HAaBYATH MOJENI Ha KIIEHTCHKHX TNPHCTPOSX YW Ha CepBepax.
TensorFlow ms JavaScript Moske 3a0e3meunTi 0OUMCIICHHST HAa CTOPOHI KiIi€HTa, Toai sk Python
MOJKE BUKOPHCTOBYBATH PECYpCH Ha CTOPOHI cepBepa. OTpuMaHi pe3yibTaTH IMiATBEPIKYIOTb,
mo Mozeni B BeO JojaTkax 3 MAaIIMHHUM HaBYaHHAM MOTPeOYyIOTh ONTHUMI3alii Ta €
MOBUTBHILIMMY, HDK Yy CepBepHii peaii3amii, BpaxOBYIOYM 4Yac BUKOHAHHs HaBYaHHsA. ToMmy
PO3MIp NaHUX BAXKJIMBHUHA U1 €(eKTHMBHOrO MalIMHHOTO HaBYaHHS MOZENI B OOYMCICHHSIX Ha
CTOPOHI KITi€HTA.

BukopucraHHsS Ha KII€HTCBKiI CTOPOHI, 30kpeMa 3a nonomoroto TensorFlow mms JavaScript,
MOXX€ BHKOHYBAaTH HAaBYaHHS MOJENEH y MpOTe HABYaHHSI MPOBOJHUTH Kpalle HAa OKPEeMHX
00YHCITIOBaHNX pecypcax. BUkopucTaHHsS cepBepHUX pecypciB, ski 6a3yroTbes Ha Python, Takox
Mae CBOI mepeBaru, 0COOIMBO B 00pOOII BEMMKHUX OOCSTIB JaHUX a00 CKIaTHHUX MOJEJel, mpoTe
Jiesika BTpaTa yacy MOXKe CIIOCTepiraTucs IiJ yac oOMiHy JaHMX (3aIiT-BiIIOBIIb).

BaxJTHBOIO Y4aCTHHOO IILOTO JOCTIHKEHHS € Bi3yami3allis pe3yJbTaTiB B PEKUMI PEabHOTO
yacy. B mepcriekTuBi HOCITIPKEHHST MOXKHA PO3IIMPHUTH HA MOBHOI[HHUX KOHBEEpP 3YMTYBaHH:,
OMPAIIOBAaHHS Ta aHATI3y JAHUX 3 peatizalliio cucteM OOpOOKH MPUPOJHOI MOBH Y IHIMPOKOMY
CIEKTPi 3aCTOCYBaHb, Bijl COLIATFHIX MEPEX N0 i IIPUEMCTB.

Knrwouosi crosa. MalliHHE HABYAHHS, KIIEHTChKAa CTOPOHA OOYHCIICHHS, CEpPBEpHA CTOPOHA
0o04YHCIIeHHs, aHalli3 TeKCTy, 00poOka mpupoaHoi MoBH, TensorFlow, 4ac HaB4aHHS, COIiajbHI
MEpexi.
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