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From the viewpoint of the evolution of computing devices and corresponding use cases, the 

article structures an information systems timeline progressing through early electromechanical 

devices, electronic vacuum tubes, solid-state and integrated circuit electronics, the advent of 

microprocessors, personal and remote computing, and distributed systems of numerous 

autonomous devices, while exploring different approaches to a digital representation of 

computational entities. By establishing the research scope and organizing scholarly sources 

chronologically, the article reveals and selects connections between individual events, provides 

an overview and critical analysis, and highlights expected future expansions and shifts in 

approaches to digital representation. 

Thus, the article examines a shift from operations and operands, their further complication 

into code and data structures, and the transition from procedural to structured and object-oriented 

programming (OOP). Client-server applications implemented with static OOP and relational data 

management are examined as the pinnacle of monolithic architecture. The subsequent domain-

driven design (DDD) and microservices architecture are examined as contemporary methods for 

remote cloud computing environments. The article then discusses the rise of the Internet of Things 

(IoT), the emergence of smart things and digital twins, describes advanced and novel use cases of 

global digitalization, such as Industry 5.0 ideas, and reveals the limitations of extant methods for 

corresponding digital representation. 

Ultimately, the article introduces a novel method for digital representation employing the 

post-non-classical paradigm in computer science, which eschews predefined structures in favor 

of dynamic, interaction-based representations, enabling flexible and adaptive design of distributed 

systems. Future research directions include the formal specification of this approach and the 

development of tools for its implementation in complex distributed systems. 

Keywords: digital representation, solution architecture, programming paradigms, distributed 

systems, internet of things, digital twin, industry 5.0 

 

Introduction 

At the end of 1913, a continuous car assembly system was launched at Henry Ford's factory 

in Highland Park, Michigan, USA. The entire assembling process was divided into simple, short 

operations, each performed by a separate worker. The assembly time for a single car was reduced 

from more than 12 hours to just 93 minutes, and eventually, the factory produced a new car every 

24 seconds. By 1927, more than 15 million Ford Model Ts had been manufactured [1, 2]. 

Specialization, distribution of functionality, and simultaneous execution of different parts 

of a common task marked the advent of the Second Industrial Revolution. As we now enter the 

era of the Fifth Industrial Revolution, Industry 5.0, it is worth considering the development of 
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information technologies from the viewpoint of the formation of complex distributed systems, 

particularly the methods and approaches of representing digital entities within the sequence of 

evolution and the context of use cases. 

Nouns and Verbs 

The progression of computing devices from mechanical calculators to early semiconductor 

computers [29, 30] marked a transition from simple arithmetic operations to complex sequences 

of commands, all based on representing data as numbers. 

Originating with mechanical calculators, the first generation of computers included 

mechanical and electromechanical devices. The Pascaline [3], Blaise Pascal's arithmetic machine 

invented in 1642, was a pioneering mechanical calculator capable of addition and subtraction. 

Gottfried Wilhelm Leibniz's arithmetic machine, the Stepped Reckoner [4], developed in 1672 

could perform multiplication and division. Charles Babbage's Difference Engine [6], an 

advanced mechanical calculator developed in the 1830s, could approximate logarithms and 

trigonometric functions using polynomials. Babbage's later invention, the Analytical Engine [6], 

further advanced computational concepts, although it was never completed. 

In 1941, German engineer and computer pioneer Konrad Zuse developed the Z3  computing 

machine [7] utilizing electromechanical relays, making it the world's first programmable 

computer. It was designed for use in aircraft and early rocket construction and calculations at the 

German Aerodynamic Research Institute. The Z3’s upgraded version, the Z4 [8], completed by 

Zuse in 1950 after World War II, became the first commercially sold computer. It was acquired 

by the Swiss Federal Institute of Technology in Zurich and later by the Franco-German Institute 

of Research in France. In 1944, under the direction of American computing pioneer Howard 

Aiken, IBM constructed the Harvard Mark I, also known as the Automatic Sequence Controlled 

Calculator (ASCC) [9], for Harvard University. In a sense, it marked the completion of Babbage's 

Analytical Engine. The US Navy employed this advanced electromechanical relay-based 

programmable calculator for ballistic calculations and the study of the implosion of the first 

atomic bomb at the end of World War II. 

The second generation of computers utilized electronic vacuum tube technology. The first 

computational systems of this generation, Colossus Mk I and Mk II, developed by engineer 

Thomas Harold Flowers with the British General Post Office in 1943, were employed for the 

decryption of intercepted radiotelegraph messages from the German Lorenz SZ 42 cipher 

machine, which was more advanced than the Enigma [10]. Subsequently, in the UK, for use in 

the British nuclear program, the Manchester Mark 1 computing system, which was the first to 

utilize drum memory, was developed at the Victoria University of Manchester in 1948 as the 

successor to the Manchester Baby computing experiment, which was the first to utilize electronic 

vacuum tube memory [11, 12]. Their successor, the Ferranti Mark 1, built in 1951, became the 

first commercially sold computer utilizing vacuum tube technology [13, 14]. 

The well-known ENIAC computing system [15, 16], developed in 1945 by John Presper 

Eckert and John Mauchly at the University of Pennsylvania, USA, was the first programmable 

electronic universal digital computer, performing calculations for the US nuclear program and 

weather modeling. The EDVAC computing system [17, 18], developed in 1949, was employed 

at the Ballistic Research Laboratory and the US Army's DEVCOM Research Laboratories. The 

first unit of the UNIVAC I computing system [19] was employed at the US Census Bureau in 

1951. A total of 46 UNIVAC I systems were sold to various federal agencies and companies for 

economic and statistical tasks and even once for predicting the outcome of the US presidential 

election. 
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The Whirlwind I computing system [20], developed in 1951 for the US Navy at the MIT 

Servomechanism Laboratory, was used for early digital air defense and air traffic control 

operations and featured the first graphical display with a light pen for targeting. IBM's first 

commercial vacuum tube computer, the IBM 701 [21, 22], also known as the “Defense 

Calculator,” was developed in 1952 to assist the US during the Korean War. All IBM 701 units 

were employed [23] at government organizations, military establishments, and aircraft 

manufacturers on the US West Coast. The IBM 701 was the first computer for which software 

was created for translating into English from another language. 

The IBM 704 mainframe [24], developed in 1954, was the first mass-produced computer 

with hardware for floating-point operations, establishing the subclass of "scientific architecture" 

for subsequent IBM computers. The FORTRAN and LISP programming languages were first 

developed for use for the IBM 704 [25, 38]. In 1957, John McCarthy, an American computer 

scientist [26], the inventor of the LISP language and the first to use the term "artificial 

intelligence" in 1955, began the first implementation of a time-sharing system on a modified 

IBM 704. In 1962, Bell Labs used the IBM 704 for the first human speech synthesis. 

At the Kyiv Institute of Electrical Engineering of the Ukrainian SSR, under the direction of 

Serhiy Lebedev, the Small Electronic Calculating Machine (MESM) was developed between 

1948 and 1950, utilizing about 6000 vacuum tubes [27, 28] Deployed in Feofaniya in the Kyiv 

region, MESM is noted as the first programmable computer using vacuum tubes in continental 

Europe. MESM was used for scientific, industrial, and military applications. 

The third generation of computers utilized solid-state discrete electronics and integrated 

circuit technology. The invention of the transistor by John Bardeen, Walter Brattain, and William 

Shockley in 1947 [31] marked a revolutionary advance in computing technology, replacing bulky 

vacuum tubes with smaller and more reliable components. The IBM 608 programmable 

calculator [32], introduced in 1957, was the first commercial computer to be composed solely of 

transistors. The D17B onboard computer for the US Minuteman-1 intercontinental ballistic 

missile, developed in 1962 by North American Aviation's Autonetics division [33], was among 

the earliest instances of a computer utilizing transistor technology. 

A significant milestone in the development of computing systems based on discrete 

electronics and integrated circuits was the American manned lunar flight program Apollo. The 

Apollo missions employed two principal computing systems: the onboard Apollo Guidance 

Computer (AGC) [34] and the IBM System/360 [35] mainframe on the ground. The AGC, 

developed by MIT in the early 1960s and first tested in 1966, was one of the first computers 

utilizing integrated circuits. The AGC provided real-time space flight control and navigation for 

the missions. 

The IBM System/360 Model 91 mainframe [36], deployed at NASA's Goddard Space 

Flight Center as a ground-based flight computing system, was based on discrete bipolar transistor 

and diode technology with hybrid module packaging. The IBM System/360 Model 91 introduced 

one of the first implementations of a Complex Instruction Set Computer (CISC) computation 

core architecture using microcode for executing complex commands, with support for out-of-

order execution and instruction pipelining. The procedural programming language PL/I 

(Programming Language One), which became the prototype for PL/M (Programming Language 

for Microcomputers) used in early microprocessors and later the DOS (Disk Operating System) 

family for early portable computers, was first developed as part of the IBM System/360 family. 

The AGC's DSKY data input-output interface in the Apollo mission's astronaut module, 

with its calculator-like keyboard, was a clear symbol of the early era of computing devices in 

approaches to data representation and manipulation. The commands were entered numerically 
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using a "verb-noun" system, where verbs described the operations and nouns represented the 

data to which the operations applied. The structures of operations and data in the computer's 

memory defined the main computational models of the time. 

This approach directed scientific and engineering thinking toward the active development 

of discrete mathematics, numerical methods in algebra, and formal methods in programming. 

Mathematical logic, set theory, algorithm theory, automata theory, and algorithms for numerical 

and iterative methods for solving linear and nonlinear, integral and differential equations were 

rapidly developed. These, along with procedural programming languages such as FORTRAN 

[25] (developed by IBM in the early 1950s for numerical methods and scientific calculations), 

ALGOL [37] (developed in the mid-1950s by a team of European and American computer 

scientists at the Swiss Federal Institute of Technology in Zurich as an imperative algorithmic 

language), LISP [28] (developed at MIT in the late 1950s as a procedural-functional language 

for mathematical notation), and COBOL [39] (developed within US Department of Defense 

initiatives in the early 1960s for business and management tasks), became the principal methods 

and tools for performing computing tasks. 

Considering the mentioned use cases, the first-to-third generation computers were 

employed to address scientific and engineering tasks primarily involving computation operations 

in mathematical analysis, aerodynamics, hydrodynamics, ballistics, space navigation, 

meteorology, geophysics, chemical processes, nuclear processes, material strength and shape, 

crystallography, among others. They also initially addressed statistics, economics, banking, and 

accounting tasks for governments and corporations. 

The early computing systems were developed in an environment defined by individual, 

unique, and innovative authorial solutions, often under strict and secretive regulation by 

governments and corporations. The computing science pioneers were qualified scientists, 

teachers, and graduate students from world-leading educational and scientific institutions. The 

creation of computer programs satisfying widespread use cases was primarily a scientific 

endeavor. The prevailing methods of the classical scientific paradigm prompted consistent, 

predictable development processes, with hierarchical management often based on the individual 

characteristics of engineers and program directors. 

The unchanging demand for solutions to increasingly complex and diverse computing tasks 

highlighted a fundamental question in the field of information technology: how to ensure the 

growth of computing systems' productivity? Technological progress in the creation of computer 

components partially answered this question, but a boost in clock speed alone did not necessarily 

determine overall productivity. The complexity of computing systems required the effective use 

of hardware, software, and human resources for maintenance, program development and 

deployment, data preparation, and a series of related computations. The lack of coordinated and 

integrated functioning of these necessary resources could result in delays in the outcome. 

The optimal approach to ensuring the effective utilization of resources was through the 

compartmentalization and specialization of the various components and processes of a system 

into distinct layers and blocks. For instance, this entailed the specialization of hardware and 

software architecture, such as types of registers and memory, types of numerical data, the 

separation of microcode in the computing core from operating system code and user program 

code, etc. Among other aspects, this involved code blocks and procedures developed by diverse 

teams intended for reutilization in various tasks, and the emergence of early high-level computer 

languages and procedural compilers that simplified programming (in comparison to machine 

code) by enabling abstraction levels of data and program representation. 
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The concept of separate terminals with the ability to receive various tasks from each 

emerged to optimize the working and idle time of computing blocks between individual 

computation episodes. Starting in the 1950s, mainframes began to support batch processing, 

which permitted the sequential execution of tasks from different terminals as soon as the system 

had available time. The FORTRAN Monitor System (FMS) operating system was designed to 

support such batch processing. In the 1960s, IBM standardized Job Control Language (JCL) 

[40], which subsequently supported the execution of batch tasks from remote terminals. 

In 1961, the Massachusetts Institute of Technology (MIT) developed the first known time-

sharing operating system [41], the Compatible Time-Sharing System (CTSS). As the name 

implies, CTSS maintained backward compatibility with FMS. Subsequently, in 1965, the 

inaugural email program for the CTSS operating system was developed at MIT, enabling users 

to exchange messages via remote terminals connected to a telephone line. In 1962, the BBN 

company, originating from MIT, developed the BBN Time-Sharing System [42] based on the 

DEC PDP-1 computer system. In 1964, Dartmouth College developed the Dartmouth Time-

Sharing System (DTSS) [43], based on General Electric's GE-225 computing and DATANET-

30 interface systems. Initially, 20, and later 40, remote teletype terminals were connected to the 

DTSS. For this system, a team of Dartmouth College students led by professors John Kemeny 

and Thomas Kurtz developed the compiler for the new BASIC computer language (Dartmouth 

BASIC) [44], to teach programming to beginners. The remote terminals thus became the first 

conceptual prototypes, laying the foundation in the mid-1960s for the first defense and scientific 

computer network, ARPAnet [45, 46], which became a prototype of the Internet. 

Amid Stack and Queue 

The substantial growth in computer performance during the late 1950s and early 1960s led 

to an increase in the complexity of computer programs. Consequently, the difficulty of 

maintaining them using procedural programming became apparent, prompting further search for 

approaches to optimize programming. One such approach involved enhancing the structural 

division of programs, levels of access to data and procedures, etc. As a result, high-level 

programming languages gained more algorithmic expressiveness and structure. For example, the 

ALGOL language, adopted by engineers in Europe and North America, advanced the structural 

organization of procedural languages [37]. The subsequent evolution of this approach established 

the foundation for structured programming and formed the basis of the Pascal and C languages 

that were introduced in the 1970s. 

Developing programs to control early graphical user interfaces (GUIs) became particularly 

challenging using procedural programming. Existing languages did not provide simple ways to 

represent geometric elements using numerical structures and nested procedures, nor could they 

effectively program GUI interactions with the user. Reflecting on this challenge, in 1963, 

American computer scientist Ivan Sutherland presented Sketchpad in his doctoral dissertation 

[47]. Sketchpad was a graphical user interface program that enabled the manipulation of 

graphical shapes on a cathode-ray tube using a light pen, and in which the terms "objects" and 

"instances" were first conceptually used. 

In 1962, Norwegian scientists Kristen Nygaard and Ole-Johan Dahl studied the modeling 

systems of interacting elements. They found that language structures based on stacks were not 

an effective representation of such systems. Instead, they determined that language structures 

based on queues were needed, which ALGOL did not provide. Their new programming language 

[48], SIMULA (and later SIMULA 67), became the first language to conceptually use the terms 

"class/subclass" and its “type.” Nygaard noted: 
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“... SIMULA' SIMUlation LAnguage' represents an effort to meet this need with regard to 

discrete-event networks, that is, where the flow may be thought of as being composed of discrete 

units demanding service at discrete service elements, and entering and leaving the elements at 

definite moments of time. Examples of such systems are ticket counter systems, production lines, 

production in development programs, neuron systems, and concurrent processing of programs 

on computers.” [49] 

American computer scientist Alan Kay, while studying for his Ph.D. in computer science 

at the University of Utah from 1966 to 1969, was inspired by the ideas of Sketchpad and 

SIMULA, as well as the influence of MIT's artificial intelligence laboratory pioneers who 

conceptualized LISP atoms with attributes as a kind of "objects." From a use case perspective, 

he was among the first to understand the true implications of Moore's Law [50] for the computer 

industry, predicting the advent of portable computers (due to the rapid miniaturization of 

components) and their interactive user-friendly interfaces (due to the extensive growth of end-

users). Alan Kay wrote: 

"... I thought of the whole as the entire computer and wondered why anyone would want to 

divide it up into weaker things called data structures and procedures. Why not divide it up into 

little computers, as time sharing was starting to? But not in dozens. Why not thousands of them, 

each simulating a useful structure?" [51] 

The Smalltalk language, developed in the 1970s at Xerox PARC by scientists from the 

Learning Research Group (LRG), including Alan Kay, became the first formally pure object-

oriented programming (OOP) language [38]. Smalltalk was conceived as a dynamic language 

capable of message exchange between objects. At this time, Xerox PARC developed the 

concepts of the graphical user interface, desktop computer, monitor, mouse, keyboard, and 

Ethernet network [52]. In 1973 these concepts materialized in the non-commercial Xerox Alto 

computer utilizing integrated circuits. 

Early methods of object-oriented programming were associated with event-driven 

techniques, wherein objects were represented as automata controlled by mutual messages to alter 

their states. In contrast to representing digital entities as structures composed of numbers, these 

methodologies established a new digital abstraction: a holistic element, an object, that hides the 

complexity of digital representation from the programmer and instead exhibits its properties for 

data filling and dynamically interacts with other objects. Despite its lack of popularity in the 

1960s, this approach was institutionalized with the advent of personal computers with graphical 

interfaces in the 1980s and beyond. 

In 1967, computer scientist and engineer Ken Thompson introduced a new operating 

system called UNICS (UNiplexed Information and Computing Service), inspired by his previous 

work at Bell Labs on developing a multitasking time-sharing operating system for hundreds of 

users. The UNICS [53] operating system (later abbreviated to UNIX) was initially designed as a 

modular, structured system oriented towards limited resources, deployment on various systems, 

and providing access to many users. In 1972, Dennis Ritchie at Bell Labs developed the C 

programming language [54], which in 1973 became the language of the UNIX kernel. The C 

language, rooted in ALGOL, gained a clear, minimalist structure and close access to system 

resources. Later in 1980, the UNIX BSD (Berkeley Software Distribution), implemented the 

TCP/IP stack developed at Berkeley for the ARPAnet network, contributing to the widespread 

adoption of TCP/IP. Dennis Ritchie described the communicative aspect of UNIX: 

"What we wanted to preserve was not just a good environment in which to do programming, 

but a system around which a fellowship could form. We knew from experience that the essence 



A. Shuparskyy, Y. Furgala 

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 27 

9 

of communal computing, as supplied by remote-access, time-shared machines, is not just to type 

programs into a terminal instead of a keypunch, but to encourage close communication." [55] 

Later in 1991, Finnish computer science student Linus Torvalds, inspired by MINIX - a 

small UNIX-like system developed for educational purposes by computer science professor 

Andrew S. Tanenbaum - introduced Linux [56]. This open-source operating system aimed to 

provide a free alternative to proprietary UNIX systems and to extend the UNIX approach to a 

wide range of devices in the future. 

At the end of the 1960s, English scientist Edgar F. Codd first described the theory of the 

relational model of data and relational algebra as an approach to data management [57]. Based 

on these, in the early 1970s, Donald D. Chamberlin and Raymond F. Boyce at the IBM Research 

Laboratory in San Jose developed a new declarative data manipulation language called SQL 

(Structured Query Language), initially named SEQUEL (Structured English Query Language) 

that for the first time was implemented within IBM’s System R database management system 

[58]. The first customer of System R was Pratt & Whitney in 1977. 

Fourth-generation computers integrated computational elements into single-chip 

microprocessors. In 1971, the Japanese company Busicom, in partnership with Intel, designed 

and manufactured a chip that first combined all the computational components of a 

programmable calculator, which previously consisted of several integrated circuits, into a single 

chip, the Intel 4004 [59], which could execute up to 93,000 instructions per second. In 

comparison, the ENIAC could execute not more than 5,000 instructions per second. One of the 

subsequent microprocessors, introduced in 1974, was the legendary Intel 8080, utilized in the 

first personal computers. 

Early microprocessors, including the Motorola 68000 and Intel x86 families, inherited the 

conceptual Complex Instruction Set Computer (CISC) architecture from mainframes. However, 

in the mid-1970s and early 1980s, scientists developed the RISC (Reduced Instruction Set 

Computer) architecture, implemented in the ARM processor family, among others. The RISC 

architecture provided unified and simpler commands, shifting the complexity of programming 

internal microcode to external compilers. This allowed a broader range of compiler developers 

to join the small world of microprocessor developers. The RISC architecture freed up space on 

the chip for internal memory and number of registers, making RISC processors fast and 

optimized for specialized and embedded applications, particularly in military, aerospace, 

medical, and industrial fields. Further competition between CISC and RISC microprocessors 

stimulated high optimization, support for temporal and concurrent multithreading, and the 

development of multi-core superscalar microprocessors. Processor specialization spread, leading 

to processor architectures such as ASIC (Application-Specific Integrated Circuit) and DSP 

(Digital Signal Processor) aimed at peripheral devices and embedded systems. 

In 1974, MITS introduced the first portable computer, the Altair 8800 [60], based on the 

Intel 8080 processor. The interpreter for it, Altair BASIC, became the first product of Microsoft, 

founded by Bill Gates and Paul Allen. In 1976, Apple Computer [61], founded by Steve Jobs 

and Steve Wozniak, constructed its first portable computer, the Apple I. In 1977, the Apple II 

with an Integer BASIC interpreter was released, becoming the first mass-produced commercial 

portable computer in the world. In 1981, IBM released the IBM Personal Computer (IBM PC) 

[62], which became the standard for personal computers for years. The Apple II and IBM PC 

featured keyboards, mouse manipulators, and video monitors as user interfaces. In 1981, 

Microsoft introduced its version of a disk operating system, MS-DOS, which became the basic 

operating system for early personal computers, and in 1985 it introduced the first multitasking 

graphical environment Windows 1.0 for IBM PC-compatible computers. 
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In the 1980s, NeXT developed the object-oriented language Objective-C [63] for a new 

operating system, which served as the foundation for macOS and iOS. Objective-C combined 

features of the C and Smalltalk languages, particularly supporting event-driven OOP objects 

designed considering graphical interface tasks. Simultaneously, Bjarne Stroustrup at AT&T Bell 

Labs began developing the new object-oriented language C++. Unlike Objective-C, C++ first 

implemented a distinct approach to OOP based on the utilization of methods to define object 

behavior rather than on event handling [64]. C++ incorporated all modern OOP paradigms: 

inheritance, polymorphism, and encapsulation. Although C++ did not yet have strict typing, it 

became the first widely used OOP language. 

Monolith Erected from Objects 

The field of computer development underwent a profound transformation. The practice of 

programming began to disseminate from scientific laboratories to a broader audience. Computer 

science became a popular and accessible subject in universities and colleges, particularly 

incorporating the paradigms and approaches of object-oriented programming into their curricula. 

The computer industry transitioned from being primarily developed by government 

organizations and large corporations to an open market, becoming accessible to home users, 

education institutions, medium enterprises, applied research laboratories, etc. Novel use cases 

and application tasks emerged. 

One class of applications involved the development of data management and data exchange 

systems, process management systems, and expert systems for governmental, financial, and 

banking institutions, manufacturing corporations, research institutions, etc. Thus, in Mannheim, 

Germany, in 1972, a group of former IBM employees founded SAP (Systems Applications and 

Products in Data Processing) [65].  In 1978 it combined finance, production, sales, and other 

resources of large companies in the R/2 computer system. The R/2 systems were acquired by 

DuPont, General Mills, Goodyear Tire and Rubber, Heinz, Shell, and other giants. 

Another class of applications included multitasking windowed operating systems and 

applications with graphical and other user interfaces for personal computers. In particular, these 

were office programs, programs for processing and editing audio, graphics, and video, integrated 

development environments (IDEs), computer-aided design (CAD) systems, programs with 

graphical interfaces for managing laboratory and medical equipment, computer games, and 

more. Thus, in 1982, Autodesk entered the market [66] with its inaugural product, AutoCAD for 

IBM PC.  

Embedded applications constitute a distinct class among computer systems. Mobile 

devices, such as missiles, aircraft, spacecraft, and others, were among the first to require 

embedded onboard navigation and motion control systems. Likewise, numerical control (NC) 

applications were needed in manufacturing. Back in 1967, the American company Bedford 

Associates presented the prototype of a PLC (Programmable logic controller) on 

semiconductors, the MOdular DIgital CONtroller (Modicon) [67], used by General Motors 

Hydramatic to control the production of transmissions for Cadillac, Chevrolet, and Pontiac cars. 

Early embedded systems and applications were experimental military developments or 

individual industrial and scientific prototypes. The advent of microprocessors led to the 

widespread propagation of embedded applications in transportation, manufacturing, laboratory 

research, healthcare, communication. Individual embedded devices eventually combined into 

automated control systems for various vehicles and large dispatch control systems for 

transportation, energy, mining, and production facilities. The development of such automation 
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systems followed predetermined requirements and specified lists of devices, their connections, 

interfaces, and other characteristics. 

Software development processes overall reflected contemporary business organization 

approaches of the time, namely various forms of end-to-end cascading resource planning for 

development tasks and teams. Before the development of a program, there were defined stages 

of requirements analysis and documentation, detailed architectural design, definition of the 

execution phase, division and coordination of subtasks, followed by sequential phased testing, 

debugging, and delivery of the final product to the customer or market. 

In 1981, the U.S. National Science Foundation (NSF) financially supported the Computer 

Science Network (CSNET) expansion, which supplemented ARPAnet. In 1982, TCP/IP was 

standardized as the Internet protocol suite, and network expansion reached a global level. The 

establishment of the National Science Foundation Network (NSFNet) in 1986 significantly 

expanded the TCP/IP networks, which in 1988-89 spread to academic and research organizations 

in Europe, Australia, New Zealand, and Japan. In 1989, Tim Berners-Lee, a British computer 

scientist and creator of HTTP, HTML, and URI, developed the first version of the HTTP 

protocol. In 1990, at the European Organization for Nuclear Research (CERN), Berners-Lee 

launched the first web server, CERN httpd. The World Wide Web emerged [68, 69]. 

The proliferation of networks, and eventually the global Internet, established the most 

popular architectural model of that time: the "client-server" model. The genesis of the "client-

server" architecture can be traced back to the separation of the first user interfaces from the 

computing core and the appearance of remote terminals. Network systems laid down formal 

principles for interaction between clients and servers. Although the efficiency of dividing the 

system into central "thick" and peripheral "thin" processes favored the client-server organization 

of processes even within a single computer, the development of networks led to a model in which 

there is a central computer (server) in the network and other computers (clients) that send 

requests to the server and receive responses available to the user in desktop or browser 

applications. The emergence of HTTP servers further expanded the range of use cases and 

application tasks. A transition commenced from client desktop applications previously available 

on local networks to HTTP clients available on global networks. Thus, web servers implemented 

tasks of data and content management, resource management, and email, and made early 

attempts to reach customers through e-commerce stores. 

In 1991, Sun Microsystems initiated the development of a novel OOP language, Java, 

which inherited the syntax of C and C++. Anticipating the global spread of networks, Java was 

designed to be a platform-independent programming language for any kind of device, from 

server computers to chips embedded in newly appearing mobile phone cards. The concept of the 

Java Virtual Machine (JVM) [70, 71] was formally defined, comprehensively isolating the 

hardware and operating resources of the computer from the Java programmer. For effective 

operation of the JVM, Java implemented completely static OOP, expecting explicit type 

definitions for the successful compilation of a program. Java collections designed upon optimal 

sorting and search algorithms were developed to support multiple objects. The language became 

straightforward to learn, with the implementation of complex algorithms encapsulated and 

hidden from the programmer, who needed to use ready-made types or their inheritance. The Java 

OOP approach did not gain much traction in GUI applications. Instead, it became particularly 

popular in the area of server solutions. At the end of the 1990s, Microsoft introduced the C# 

language [72], similar in approach to Java. 

Server solutions did not possess graphical interfaces and did not implement active object 

interactions. The programming of objects involved reflecting a business task into separate 
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statically related classes, such as "warehouse," "product," "customer," "invoice," etc., for which 

necessary data and processes were defined. Datasets were formed by SQL queries to a relational 

database. Requests from the client application served as entry points to specific server processes. 

Upon receipt of a request, the server processed and composed data, generated elements of the 

visual representation of the response, and provided it back to the client according to the request 

parameters. The digital representation formed the primary data and system behavior in basic 

abstract classes, while a variety of functionalities supported practical scenarios of handling 

numerous requests in complex class hierarchies and their projections onto interrelated database 

table structures. It proved impossible to separate such scenarios from each other. Therefore, the 

system was necessarily constructed as a monolithic structure. 

As was the case with procedural programming, a situation arose where the implementation 

of new types of applications utilizing OOP languages became increasingly challenging. The 

inheritance and encapsulated functionality reuse paradigm, which originally simplified code 

structure, now stimulated the creation of complex class hierarchies, leading to significant code 

coupling and, consequently, difficulty in making any changes to the program. The principal 

methods for organizing the code of complex applications became programming patterns and 

various rules for writing good OOP code [73], such as KISS (Keep It Simple, Stupid), DRY 

(Don't Repeat Yourself), YAGNI (You Aren't Gonna Need It), BDUF (Big Design Up Front), 

APO (Avoid Premature Optimization), SOLID, and others, all based on the generalization of 

practical experience in applying OOP by skilled developers rather than some formal evaluations. 

Another drawback of monolithic server solutions was their performance limitations. As the 

number and complexity of processes for handling client requests increased, high latency and 

overloading of typical server performance became common issues. To significantly improve 

overall system performance, server hardware performance had to be increased. 

Remaining an Object Among Virtual Machines 

At the beginning of the 2000s, client-server solutions became widely popular among 

applications for medium and small businesses, supermarkets, schools, hospitals, social 

institutions, local governments, etc., primarily for resource management, accounting, and 

supporting operational and commercial activities. These organizations used inexpensive, 

commercially available hardware systems. However, by the early 2000s, these existing single-

processor servers generally could not deliver the performance gains needed for monolithic 

applications. For these reasons, and due to the growing globalization of business and the merging 

of local enterprises into large business structures, client-server applications began to specialize. 

Different segments and departments of enterprises and organizations deployed their specialized 

server applications on separate servers, representing interfaces for interaction known as web 

services. To enable the interaction of such services and combine them into a single system a new 

class of specialized solutions emerged - enterprise service bus (ESB). A service-oriented 

architecture (SOA) [74] was established, which generally supported the utilization of monolithic 

applications as particular services while enabling the deployment of the entire system on 

numerous individual server computers. 

The early computers employing a set of parallel processors for computations within a 

shared memory were introduced in the 1960s-1970s. Notable examples include the 

supercomputers developed by American engineer Seymour Cray [75]. However, these were 

costly, custom-built products purposefully designed for intensive scientific calculations. With 

the improvement of microprocessors in the 1980s and 1990s, less expensive business-class 

solutions appeared, including the IBM POWER microprocessor architecture family. In the 
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2000s, these innovations led to the development of parallel and distributed computing systems 

utilizing multi-core microprocessors and combining multiple processors and individual servers 

into powerful computing architectures. Subsequently, such computing systems have specialized 

in two distinct directions: virtual computing environments for a wide range of business 

applications, and specialized parallel computing systems - modern supercomputers - for use in 

scientific research centers, etc. 

In 1999, VMware introduced a software application that enabled the execution of multiple 

instances of x86 or x86-compatible operating systems to run on a single physical computer [76]. 

In 2002, Amazon established the AWS platform, which, since 2006, has provided commercial 

access to remote data centers with data storage systems and virtual machines for deploying 

applications. In 2008, Microsoft established its remote deployment platform, Windows Azure, 

and Google introduced the App Engine. The concept of "cloud computing" emerged. 

In 2000, American scientist Roy Thomas Fielding, one of the authors of HTTP and URI 

specifications, presented his doctoral dissertation entitled "Architectural Styles and the Design 

of Network-based Software Architectures" at the University of California [77]. In chapter five, 

"Representational State Transfer (REST)," he suggested a conceptual framework over HTTP that 

defined the atomicity of entities on the network and established rules for changing their state, 

laying the foundation for the RESTful concept of application-level protocols. 

In 2004, engineer Eric Evans, in his book "Domain-Driven Design: Tackling Complexity 

in the Heart of Software," [78] described principles for structuring any application task's domain 

(problem) area to be represented in a digital solution. He proposed a method for constructing a 

set of loosely coupled, meaningfully homogeneous bounded contexts and developing an abstract 

service structure that represents such a context and provides an interface for modifying its state. 

In the mid-2000s, a novel approach to designing distributed server systems emerged, 

distinct from both monolithic and service-oriented architectures. The microservice [79, 80, 81] 

became the basis of this new approach, encompassing an identified domain entity and 

representing a synchronous RESTful interface and/or an asynchronous messaging interface for 

modifying its state. The data representing a domain entity do not possess the complex internal 

links typical of relational database representations. Instead, they can be represented, for example, 

as a document or key-value pair, as is inherent in non-relational data management systems. The 

microservice reflects a meta-object representation of a domain entity, where the “meta-objects” 

dynamically process messages or change states among themselves or in response to user 

requests. Essential business logic forming visual representations can be extracted from the server 

to the client application, for example, using technologies such as Single Page Applications 

(SPA). In a sense, the microservices resemble dynamic objects implemented in the SmallTalk 

language yet but operate at a new level of abstraction. 

To support the deployment of microservice systems, environment preparation 

(terraforming) and containerization technologies were developed alongside virtualization. Cloud 

platforms introduced access and administration of cloud infrastructure and enabled pre-deployed 

applications for data and message management, system auto-scaling, etc., establishing the 

infrastructure, platforms, and software as a service (IaaS, PaaS, SaaS) approach. A new direction 

in programming systems in remote environments, known as development and operations 

(DevOps), emerged. The term "DevOps" first gained traction in 2009 during the DevOps Days 

meetings in Belgium [82]. 

OOP languages such as Java, C#, and C++ continued to be widely utilized for writing 

microservices but now without the need for building intricate class hierarchies. In the absence of 

a need for formalized OOP, languages supporting multiple programming paradigms 
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simultaneously (procedural, object-oriented, aspect-oriented, and functional) are effectively 

developing today. Among new and experimental languages, these include Python, Perl, Ruby, 

Scala, R, and others. This mixed paradigm suggests utilizing a single language environment to 

write and deploy microservices and create logic for business and scientific tasks [83-89]. 

In 2001, leaders of prominent software development methodologies endorsed the Agile 

Manifesto. The agile development principles replaced end-to-end cascade development with 

sequential approaches and continuous adaptation of project requirements based on already 

gained project experience and achievements [90, 91]. The further development of agile 

methodologies is moving towards self-organization. 

Due to the explosive growth of remote computing systems in the 2010s and 2020s, 

alongside the widespread digitalization of various aspects of human life and activity, the 

application tasks of computing systems expanded to global business applications and 

applications for large data and computational tasks in applied and fundamental scientific 

research. Such systems are employed in the collection, storage, and analysis of large data sets in 

a variety of fields, including genome research, molecular modeling, elementary particle collision 

analysis, exoplanet detection, imaging black holes, machine vision, virtual and augmented 

reality, supporting blockchain, and social networks. Due to the powerful capabilities of parallel 

and distributed computing, artificial intelligence research and applications are experiencing an 

intensive revival, including renewed interest in large language models (LLM) and generative AI 

applications [92].  

Everyone Needs a Digital Twin 

Alongside the development of remote data centers and supercomputers, a new phenomenon 

of digital representation emerged on the verge of the third millennium. This was enabled by the 

sustained expansion of global networks, the miniaturization of computers, and the opening of a 

new realm of user applications in global digitalization. 

The applications of embedded solutions and automation systems, previously utilized in 

scientific, military, industrial, and medical fields, began to extend to consumer electronics and 

communication at the turn of the 1990s. For example, in 1983, Motorola introduced the prototype 

mobile phone Dynatac 8000x [93], and as early as 1987, the GSM digital cellular communication 

standard was adopted [94]. In 1984, Sony released the first portable compact disc player, the 

Discman D-50/D-5 [95]. In 1988, Fuji and Toshiba introduced the first full-fledged digital 

camera, the Fuji DS-1P [96]. In the 1990s, digital controllers became ubiquitous in household 

devices such as washing machines, kitchen appliances, climate control systems, entertainment 

systems, etc.  

With the early advent of networks, consumer appliances could be connected to them. In 

1982, a modified Coca-Cola vending machine was connected to the ARPAnet network to share 

information about drinks inventory and temperature. However, unlike traditional automation, the 

integration of consumer and household devices into automated systems required the flexibility 

to modify and expand the system during use, the integration of standards from different 

manufacturers, and the availability of universal control interfaces that are understandable to 

home users. Specifying all the components and connections at the design stage enabled the 

creation of static individual solutions that were in limited demand. 

The term "Internet of Things" (IoT) was first introduced in a September 1985 speech at the 

Congressional Black Caucus Foundation's 15th Annual Legislative Weekend by Peter T. Lewis 

[97], who defined IoT as the integration of people, processes, and technology with connected 

devices and sensors, enabling remote monitoring, status checking, manipulation, and trend 
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analysis of such devices. British engineer Kevin Ashton independently introduced the term 

"Internet for Things" in 1999 [98]. 

In the subsequent decades, protocols, secure connection interfaces, system integration 

methods, and ways of digitally representing things were developed. The field of smart things and 

smart solutions integrating smart things into holistic systems has emerged. One such approach 

to developing smart solutions was to connect smart things to remote cloud services and create a 

"digital twin" of the devices involved, allowing their configuration and current state to be viewed 

and modified. In 2015, the AWS cloud platform launched AWS IoT services, and in 2016, the 

Microsoft Azure platform launched Azure IoT Hub services, both supporting the concept of 

digital twins of devices. 

The domain of smart things and smart solutions has become a primary driver of global 

digitalization nowadays. It is therefore necessary to develop novel methodologies for designing 

and developing systems that align with the openness and dynamism inherent in the use cases and 

application tasks of the smart things and smart solutions domain. So, traditional automation 

systems already implemented in industrial enterprises demonstrate a deficiency of flexibility in 

applying new solutions involving multiple integrations of autonomous devices, installations, 

plants, big data processing, smart control scenarios, and predictive maintenance using artificial 

intelligence, among other novel use cases. The issue of transitioning between different stages of 

developing industrial systems is typically addressed in the meta-standards of industrial 

automation, such as Industry 3.0 and Industry 4.0 [99]. 

The most contemporary applications of autonomous device systems generally extend 

beyond the scope of mere networks of things. A representative example of these new tasks is the 

recently submitted policy brief by the European Union, "Industry 5.0: A Transformative Vision 

for Europe" (2022) [100], which outlines the objectives for the next generation of the global 

European industrial-economic approach, which, in contrast to the previous machine-centric 

approach, now aims at a human-centric production organization that considers actual 

consumption, resilience to new shocks (such as pandemics, natural disasters, geopolitical 

changes, regional wars, etc.), focus on environmental concerns, and the ability to self-organize. 

Designing such solutions entails interpreting "digital twins" of systems and phenomena not 

merely as "twins" of purely technical devices, but as complex entities of systemic, societal, 

environmental, economic, and other nature. These entities receive data from various sources, 

including energy, production, environmental sensors, and products during their entire lifecycle. 

Nowadays and soon, the tasks of complex distributed systems include solutions for smart 

residences and cities; smart society, government, and economics; smart healthcare and 

environmental systems; smart distributed and renewable energy systems; smart space and 

celestial body exploration systems; smart drone systems (swarms); smart systems of ultra-

miniature devices (nanobots); and others. 

A review and analysis of practical architectural development experience in this field reveals 

the following major trends in the development of such future systems: 

- The number of autonomous elements tends to be large. 

- The diversity of autonomous elements tends to match their total number. 

- When they are numerous, autonomous elements tend to evenly distribute complexity. 

This suggests that such systems generally may not depend on centralized data centers or 

networks but instead distribute decision-making, computing, and data storage among their 

autonomous elements. 

The extant methods for representing digital entities, such as functional, procedural, and 

object-oriented programming, as well as domain-driven design, demonstrate inherent constraints 
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in modeling complex distributed systems. For instance, the static OOP approach necessitates the 

pre-definition of all entity types at the compilation stage. The diverse forms of OOP and DDD 

permit the only qualitative definition of classes or bounded contexts using descriptive categories, 

typically at the discretion and experience of the engineer. The structural characteristics of digital 

representations in OOP are limited to planar object properties. Collections of objects are 

designed for deployment in a single computer environment, and remote calls can only ensure a 

transfer of the state of such collection elements across the network. 

Thus, the current state of technology does not support the formation of a comprehensive 

solution that comprises an open set of individual autonomous devices. Additionally, existing 

methodologies do not provide the ability to accessibly represent and model such a system with 

all the characteristics as a single whole. 

A possible solution to this challenge is an approach to the representation of a system based 

on the principles of the post-non-classical paradigm. This approach anticipates a shift from the 

necessity of initial particularity of types, structures, and components, but postulates the original 

individual exclusivity, distinctiveness, and unstructured nature of elements of a system. 

Here, a primary aspect of the representation of a system is a potential for unbounded 

variation and interaction of elements, while the particular definition of structures and types of 

elements is a secondary aspect which is aimed at the parameterization of a system according to 

a certain purpose. Such interventions of particularity can be, for example, the interactions that 

are aimed at observing or modifying a system. One source of the interaction is a user, who 

becomes a participant in the digital representation environment. Therefore, representing 

interaction through formal (mathematical) dependencies, operations, and transformation rules 

will characterize the system qualitatively and quantitatively. 

The fundamental abstraction of representation in a digital environment should be defined 

as the Digital Entity Origin (DEO). 

For DEO, the following postulates should be defined: 

Boundless and Limitless Entity. DEO comprises specific aspects of an entity, namely 

attributes associated in an organization that have no predefined boundaries or structure. A 

mathematical representation of DEO can be expressed as an attributed graph, where edges 

represent systems of attribute associations of DEO, and vertices represent the state of each 

attribute as a nature of interaction potential according to formal (mathematical) systems of 

operations (state as an interaction).  The whole system of attributes of DEO conceptually reflects 

the volume of DEO. 

Only instances matter. DEO represents an entity that exists (real or virtual), rendering each 

DEO particular and not determining its type (or class, etc.) by definition. To achieve individual 

DEOs into a uniform representation within some set (type), it is necessary to conform 

(fold/unfold) the volume of each DEO according to formal (mathematical) systems of operations 

to a common volume in the desired set (type as an interaction). 

Expansion, not extension. DEOs’ alteration is achieved through their transformations (such 

as divisions, unions, etc.) into new DEOs with their respective volumes without reusing or hiding 

the volumes of other DEOs (as inheritance or encapsulation). The formation or transformation 

of DEOs occurs according to formal (mathematical) systems of operations (definition as an 

interaction). The propagation of DEO creates compositions of many DEOs, eventually forming 

the DEO space. 

To illustrate a targeted system with the ability to self-control, self-organize, and self-

improve, one might consider a mining station situated in the asteroid belt. In this scenario, 

various types of drones and their constituent parts, as well as asteroids and their fragments, are 
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represented by compositions of DEO entities. The formalized interaction of all DEO attributes 

enables the system to continuously maintain positioning in space and distances between objects 

as well as perform self-organized technological operations such as surface scanning and mineral 

analysis, mining and enrichment, accumulation, and logistics. The system dynamically positions 

DEO representations on individual devices; for example, the DEO of a specific rock fragment is 

sequentially located in different mining devices. The system distributes computations among 

individual devices and dynamically adapts communication. In the event of system disturbances, 

such as the physical loss or acquisition of devices, DEO space transformations occur, and 

reorganized interactions allow the mission to be completed. 

Further research is needed to develop a comprehensive specification and formal description 

of a digital entity representation system, such as DEO space. Additionally, the creation of 

practical design tools within the DEO paradigm and the subsequent adaptation of technologies 

for implementing such systems are necessary. 

Conclusion 

The representation of domain entities in computing environments has evolved alongside 

technological advancements and the emergence of new application tasks. In the early stages, 

computations consisted of operations and operands. Simple operations evolved into command 

sequences and acquired complex organization through procedural and structured programming. 

Simple operands evolved into diverse data structures, ranging from linear arrays to relational and 

graph databases. Eventually, there was a transition to representing "small computers" within a 

computer - objects. Object-oriented programming evolved from message exchange in graphical 

interfaces and network system simulations to complex static hierarchical class structures in 

monolithic server applications. With the advent of remote computing, the domain-driven 

representation of bounded contexts for correspondent use cases was established. Domain-driven 

design and microservices technology are contemporary methods for representing systems in 

cloud applications. 

The representation of digital entities in distributed systems, which consist of autonomous 

devices with embedded computers and network connectivity, marks a distinct direction in 

information technology and computer science. One of the approaches to representing such 

systems is to design "digital twins" of these devices. As the complexity of application tasks for 

distributed systems grows, the increasing number and diversity of devices, abstraction of entities, 

self-control, self-organization, self-improvement, decentralization, and both quantitative and 

qualitative characteristics of these systems necessitate a novel holistic approach to their 

description and representation. 
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З погляду на еволюцію обчислювальних пристроїв і відповідних задач застосування (use 

case), стаття структурує хронологію розвитку інформаційних систем від ранніх 

електромеханічних зразків, електронних вакуумних ламп, транзисторів та інтегральних 

мікросхем, мікропроцесорів, персональних комп’ютерів, до віддалених обчислень та 

розподілених систем автономних пристроїв, досліджуючи при цьому різні підходи до 

цифрового представлення комп’ютерних сутностей. Визначивши сферу дослідження та 

організувавши наукові джерела в хронологічному порядку, стаття відбирає та виявляє 

зв'язки між окремими подіями, надає огляд та критичний аналіз, а також висвітлює очікувані 

розвиток та зміни в підходах до цифрового представлення. 

Так, у статті розглядається рух від операцій та операндів, їх подальше ускладнення до 

коду програм та структур даних, а також перехід від процедурного до структурного та 

об'єктно-орієнтованого програмування (ООП). Клієнт-серверні рішення, реалізовані за 

допомогою статичного ООП і систем реляційного управління даними, розглядаються як 

вершина монолітної архітектури. У подальшому, доменно-орієнтований дизайн (DDD) та 

архітектура мікросервісів розглядаються як сучасні методи рішень віддалених хмарних 

обчислень. Далі в статті обговорюється розвиток Інтернету речей (IoT), поява розумних 

речей і цифрових двійників (digital twins), описуються новаторські задачі застосування у 

глобальної цифровізації, такі як Індустрія 5.0 (Industy 5.0), і виявляються обмеження 

існуючих методів для відповідного цифрового представлення. 

Зрештою, стаття пропонує до розгляду новітній метод цифрового представлення, що 

використовує постнекласичну парадигму в комп’ютерних науках. Метод прогресує від 

наперед визначених типів і структур на перевагу динамічних, заснованих на взаємодії 

сутностей, чим уможливлює цілісне та адаптивне проектування розподілених систем. 

Подальші напрямки досліджень передбачають формальну специфікацію цього підходу та 

розробку інструментів для його реалізації в складних розподілених системах. 

Ключові слова: цифрове представлення, архітектура рішень, парадигми програмування, 

розподілені системи, інтернет речей, цифровий двійник, індустрія 5.0 
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