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This study addresses the limitations of conventional centralized systems in handling the surge 

in real-time image processing demands. We propose a distributed architecture employing Apache 

Kafka to achieve near real-time image analysis. Our approach implements a decoupled workflow 

for image acquisition, processing, and spreading, facilitating parallel execution across a 

processing node cluster. Kafka acts as the core communication and data flow infrastructure, 

ensuring scalability, fault tolerance, and high throughput. Evaluations demonstrate substantial 

performance gains compared to a centralized system, validating the feasibility, advantages, and 

limitations of Kafka for distributed image processing. We systematically analyzed the impact of 

topic partitioning, consumer group configuration, and processing workload on performance. This 

work presents a robust solution for near real-time image processing tasks, promoting the 

development of efficient and scalable image analysis applications. 
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Introduction. The ever-growing deluge of data in today's world necessitates real-time 

information processing capabilities. Conventional batch processing methods struggle to keep 

pace with high-speed data streams, particularly in image processing applications. This is where 

event streaming steps in, offering a transformative approach that enables continuous data 

ingestion, manipulation, and analysis upon arrival. Apache Kafka, a free and open-source 

distributed streaming platform from the Apache Software Foundation, spearheads this 

revolution [1-3]. By harnessing Kafka's robust architecture and functionalities, near real-time 

image processing becomes a reality, opening doors to a multitude of groundbreaking 

applications across various sectors [4-6].  

Kafka boasts a distributed architecture built upon key components that meticulously 

orchestrate the data flow. Producers, akin to data injectors, continuously feed the system 

streams of events, in this case, images. These events are published to designated topics, which 

function as logical channels for categorizing and grouping related data. Brokers receive and 

manage the events, replicating them across the cluster (as depicted in Fig. 1) to ensure high 
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availability and fault tolerance [7,8]. Consumers, subscribed to specific topics, actively pull 

and process the incoming events. This decoupled producer-consumer architecture inherently 

fosters scalability and flexibility, enabling independent scaling of each component based on 

specific processing requirements. 

 

 
Fig. 1. The process of event replication inside Apache Kafka 

Furthermore, Kafka leverages a concept called partitioning to segment topics, thereby 

facilitating parallel processing for high throughput. Each partition functions as an independent 

log, storing sequences of events. Consumers can individually assign themselves to partitions, 

effectively distributing the processing load across multiple nodes. This architectural design 

empowers the system to scale and handle massive data volumes while preserving near real-

time processing capabilities. 

However, there are situations where a single event needs to be delivered to multiple 

consumers. Kafka addresses this challenge by offering two solutions: fan-out and fan-in. In the 

fan-out approach, a single producer publishes events to multiple topics, allowing different 

consumers to subscribe based on their specific needs. Conversely, fan-in involves multiple 

producers contributing to a single topic, enabling aggregation or parallel processing of the 

combined data stream. These functionalities offer significant flexibility in designing streaming 

pipelines tailored to address unique use cases. 

The true power of event streaming lies in its ability to process data as it is generated, 

offering substantial advantages over traditional batch-based approaches [10-11]. A prominent 

example is in the realm of autonomous vehicles. Event streaming enables real-time processing 

of camera footage captured by the vehicle, allowing for immediate object detection, obstacle 

avoidance, and dynamic route adjustments, all crucial aspects for safe and efficient 

autonomous navigation. Imagine a world where machines can “see” and react instantaneously. 

This is the promise of real-time image processing, a field revolutionized by technologies like 

Apache Kafka. In the realm of autonomous vehicles, Kafka becomes the backbone for 

processing video streams. It empowers vehicles to identify obstacles, pedestrians, and traffic 

signals with split-second precision, paving the way for safer and more efficient transportation 

[12]. 

Beyond the automotive industry, Kafka's applications in image processing extend far and 

wide. In manufacturing, it enables automated quality control by analyzing images on assembly 
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lines at breakneck speeds. This ensures product integrity and minimizes defects before they 

reach consumers. Similarly, the healthcare sector can leverage Kafka for near real-time 

processing of medical images. This facilitates faster diagnoses, streamlines remote 

consultations, and ultimately personalizes patient care. 

The influence of Kafka-powered image processing transcends these core examples. Its 

reach extends to environmental monitoring, where it empowers researchers to analyze vast 

amounts of image data in real-time, enabling a deeper understanding of our planet's health. 

Security surveillance systems can also benefit from Kafka's capabilities, allowing for faster 

detection of anomalies and improved threat response times. Even scientific research can 

leverage Kafka to process and analyze large datasets of scientific images, accelerating 

discovery and innovation [13]. 

While Kafka reigns supreme in the event streaming domain, it's not without competition. 

Apache Pulsar [14] and Amazon Kinesis Streams [15] offer similar functionalities. When 

making a choice, consider factors like project requirements and technical expertise. Kafka 

boasts a mature and open-source ecosystem, while Pulsar offers a simpler setup and lower 

operational overhead. Kinesis Streams, on the other hand, seamlessly integrates with other 

AWS services, making it ideal for cloud-native deployments. 

Now, let's delve into the intricate details of implementing real-time image processing 

within a Kafka architecture. The journey begins with data ingestion. Images captured by 

cameras or sensors need to be transformed into a format suitable for Kafka. This typically 

involves encoding the image data and attaching relevant metadata like timestamps. Specialized 

libraries and frameworks can streamline this process, ensuring a smooth transition from raw 

images to Kafka events. 

Next comes the producer stage, where data sources like cameras push these image events 

to designated Kafka topics. Choosing the right topics is crucial for efficient downstream 

processing [16]. Images from different sources or containing diverse content might be 

published to separate topics for targeted analysis. 

With events flowing through Kafka's veins, consumer applications come into play. These 

applications subscribe to relevant topics and continuously pull and process the image data as it 

arrives. This opens doors for powerful capabilities like real-time object detection, image 

feature extraction, and anomaly analysis. 

However, complex image understanding often necessitates multi-stage processing or 

distributed architectures. In such scenarios, Kafka acts as the central nervous system, 

facilitating communication and data exchange between various consumers. Fan-out and fan-in 

patterns become instrumental here. For instance, an initial consumer might perform 

preliminary analysis and then distribute the events to specialized consumers based on the 

detected content. This enables parallel processing and tailored analysis. 

To achieve optimal performance in this real-time processing environment, several factors 

come into play. Topic partitioning is crucial, as it distributes the processing load across 

multiple consumers, leading to improved concurrency and throughput. Additionally, consumer 

group management becomes essential for horizontal scaling [17]. Consumer groups allow for 

parallel processing within a group, effectively handling large volumes of data. However, 

striking a balance between concurrency, resource utilization, and efficient load distribution 

within the group requires careful consideration. 

For latency-sensitive applications, buffering strategies and consumer rebalance 

configurations can be fine-tuned to minimize processing delays. By understanding the trade-
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offs between buffer size and latency, we can optimize performance tailored to specific 

application requirements [18]. 

Kafka provides a robust foundation for building real-time image processing pipelines. Its 

inherent scalability, fault tolerance, and flexibility empower developers to design innovative 

solutions that unlock the true potential of image data. From autonomous vehicles navigating 

dynamic environments to healthcare professionals making real-time diagnoses, the applications 

are vast and constantly evolving. However, choosing Kafka requires a thoughtful evaluation of 

its strengths and limitations, alongside a clear understanding of its role within the broader data 

processing ecosystem. By harnessing its capabilities effectively and integrating it with the right 

tools and technologies, we can unlock the full potential of real-time image processing and 

transform the way we interact with the visual world around us. 

 

Related work. The potential of Apache Kafka for near real-time image processing, a 

niche compared to text-based streams, is a subject demanding further exploration [19]. While 

Kafka excels in real-time data management across domains, its image processing capabilities 

haven't received as much attention. This gap can be attributed to several factors. 

Firstly, image data's inherent complexity, demanding significant processing power and 

bandwidth, pushes the boundaries of Kafka's performance, especially for high-resolution or 

high-volume streams [20]. This challenge is compounded by the lack of native image 

processing functionalities within Kafka, necessitating integration with external libraries, 

introducing development complexity [21]. 

Despite these hurdles, research is actively investigating Kafka's potential in this domain. 

One study explored its use with Apache Spark for real-time object detection in video streams, 

highlighting its potential for video surveillance and anomaly detection [22]. However, the need 

for optimization and resource management for true scalability and maintaining near real-time 

performance under heavy workloads was acknowledged. 

Another investigation focused on Kafka's feasibility for real-time medical image analysis, 

particularly cancer detection in mammograms [23]. This research emphasized the benefits of 

Kafka's fault tolerance and scalability in ensuring uninterrupted data flow and enabling 

distributed processing of large datasets. However, the need for tailored data encoding and 

compression techniques to minimize bandwidth and storage requirements was also highlighted. 

The realm of steganography, where images hide messages, has also seen research into 

leveraging Kafka for real-time processing [24]. The study proposes a system utilizing Kafka 

for steganographic image transmission, capitalizing on its strengths in scalability and fault 

tolerance for ensuring reliable and efficient transmission of potentially sensitive data. 

These studies represent promising advancements, but key challenges remain. Efficient 

and scalable image preprocessing techniques that seamlessly integrate with Kafka's streaming 

architecture are crucial. Additionally, research into novel compression and encoding methods 

specifically designed for image data is essential for bandwidth and storage optimization. 

Finally, addressing security and privacy concerns related to sensitive image data transmission 

within the Kafka ecosystem is paramount for wider adoption in critical applications. 

In conclusion, while Apache Kafka offers a powerful platform for real-time data 

processing, its widespread adoption for near real-time image processing is still in its early 

stages. Overcoming the challenges related to data size, processing requirements, and image 

analysis tool integration will be critical to unlocking its full potential. As research and 

development progress, we can expect to see more robust and efficient use cases emerge, paving 

the way for broader adoption of Kafka in the exciting field of near real-time image processing. 
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This adoption has the potential to revolutionize various industries, from healthcare and robotics 

to autonomous vehicles and smart cities, where real-time insights extracted from image data 

can unlock transformative applications. 

 

Methodology. This paper presents a scalable image processing system built upon the 

robust messaging infrastructure of Apache Kafka. The architecture is designed for efficient 

handling of various image sources, facilitating near real-time analysis when necessary. 

1. Data Acquisition and Preprocessing: The initial stage acts as the ingestion pipeline, 

responsible for fetching images from designated storage or capturing them from live video 

streams.  Python's Pillow library serves as a versatile tool for image manipulation. Here, it 

preprocesses the images by converting them into a more efficient format - binary arrays. This 

compressed representation streamlines subsequent processing tasks. The prepared binary data 

is then published as messages onto the Kafka cluster, ensuring a smooth handoff to the 

processing units. The whole process is shown on Fig. 2. 

 

 
 

Fig. 2. The process of transforming images into binary array 

2. The Kafka Message Broker: The Kafka cluster forms the core of the system. Renowned 

for its high-throughput and fault-tolerant nature, it acts as a central message broker. It 

efficiently ingests the image messages published by the preprocessing stage and guarantees 

reliable delivery to downstream consumers, which are typically a collection of dedicated 

applications. 

3. Pool of Worker Applications: This component consists of a pool of Python applications 

designed to act as consumers, actively pulling and processing the image messages retrieved 

from the Kafka cluster. These applications leverage powerful image processing libraries to 

extract valuable information from the received binary data. Common tasks include image 
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resizing, object detection within the images, and image classification for categorization 

purposes. A simplified illustration of the image processing pipeline is depicted in Fig. 3. 

 

 

Fig. 3. The simplified diagram of the image processing pipeline 

While the system's core functionality revolves around processing static images, the 

underlying architecture possesses the inherent flexibility to accommodate video streams as 

input sources. This extension can be achieved by introducing an additional application module 

equipped with libraries like OpenCV or moviepy. This module would be responsible for 

splitting the continuous video stream into individual frames. Each extracted frame would then 

undergo the same processing pipeline as static images - conversion to binary arrays and 

subsequent publication onto the Kafka cluster. This approach enables near real-time analysis of 

video data, unlocking a wide range of potential applications in various domains. 

For optimal performance and smooth operation, configuring the Kafka cluster is essential. 

A dedicated section will delve into the key modifications required within the respective 

configuration files to ensure efficient message handling and resource allocation within the 

Kafka ecosystem: 

A. Broker Configuration: Individual Kafka brokers are governed by the server.properties 

file. Here, essential modifications for near real-time image processing include: 
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auto.offset.reset: This parameter dictates how consumer offsets are handled upon 

initialization. Setting it to earliest guarantees consumers begin processing from the beginning 

of the topic, ensuring they receive and process all incoming image data for a complete picture. 

log.retention.ms:  This parameter defines the duration for which messages, including 

image data, are retained within Kafka partitions. Striking a balance between data availability 

for potential reprocessing and disk usage optimization is crucial. Tools like Kafka Streams' 

compaction can be further leveraged to manage retention needs efficiently. 

retention.bytes: Setting a limit on the total size of each partition helps manage disk space 

efficiently, particularly when dealing with high volumes of image data. This parameter allows 

for proactive management of storage resources to prevent potential disk exhaustion scenarios. 

B. Topic Configuration: Each image stream within the system is represented by a 

dedicated Kafka topic. Crucial configurations for these topics are specified within the 

topic.properties file and include: 

replication.factor: This parameter dictates the number of replicas for each partition within 

the topic. It ensures data redundancy and fault tolerance in case of broker failures. Common 

choices include a value of 1 for local testing environments and up to 3 for production 

deployments. 

min.insync.replicas: This setting defines the minimum number of replicas that must 

acknowledge receiving a message before it is considered committed. It should be set to equal to 

or lower than the replication.factor for consistency, ensuring data integrity in the presence of 

potential replica failures. 

C. Producer Configuration: The Python producer application, responsible for sending 

image data to Kafka, necessitates configuration adjustments within its producer.config file. 

These adjustments include: 

bootstrap.servers: This parameter specifies the list of broker addresses, allowing the 

producer to identify and connect to the Kafka cluster. 

value.serializer: Setting this parameter ensures images are efficiently transmitted as 

serialized byte arrays within the Kafka messages. 

acks: This parameter defines the producer's acknowledgment level, controlling how many 

replicas must confirm receiving a message. Selecting all guarantees consistency at the expense 

of slightly increased latency, which might be a worthwhile trade-off for critical image data. 

D. Consumer Configuration: The Python consumer application, responsible for fetching 

images from the Kafka cluster, requires adjustments within its consumer.config file. Similar to 

the producer configuration, it includes: 

bootstrap.servers: This parameter defines the list of broker addresses, allowing the 

consumer to locate and connect to the Kafka cluster. 

key.deserializer and value.deserializer: Since our image messages lack explicit keys and 

are raw byte arrays, both settings should be set to None for efficient processing. 

group.id: Assigning a unique identifier to the consumer group is crucial. This ensures 

each member within the group only consumes messages from specific partitions within the 

topic, enabling parallel processing for faster image ingestion. 

auto.commit.enable: Setting this parameter to false grants manual control over 

committing offsets. This allows for finer-grained processing control, particularly useful for 

scenarios where image processing might require retries or error handling. 

By implementing these configuration tweaks across brokers, topics, producers, and 

consumers, a robustly configured Kafka cluster is established, providing a reliable foundation 
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for the near real-time image processing system. This optimized cluster ensures efficient image 

data ingestion, processing, and delivery, ultimately enabling the system to fulfill its purpose. 

 

Results and discussion. An evaluation of the near real-time image processing system 

built on Apache Kafka offered valuable insights into its strengths and opportunities for 

improvement. This section dissects the encountered hurdles, achieved functionalities, 

performance limitations, and potential areas for optimization, providing a holistic 

understanding of the system's capabilities. 

A. Development Obstacles and implemented solutions: The development process 

encountered several challenges, each requiring unique solutions. An initial hurdle involved 

efficiently converting images into a format suitable for processing while maintaining 

computational efficiency. To address this, the system leveraged a custom-built library 

optimized for image data conversion, achieving significant performance improvements 

compared to off-the-shelf solutions. However, scaling this process for extremely high-

resolution images or massive datasets remains an area for further exploration. 

Another challenge involved guaranteeing reliable message delivery within the Kafka 

cluster. While Kafka's built-in fault tolerance mechanisms minimized data loss risks, achieving 

consistent low-latency delivery across geographically dispersed clusters necessitated additional 

configuration. Implementing techniques like data sharding across geographically distributed 

brokers and optimizing message batching significantly improved message delivery speed and 

consistency. 

B. System Functionalities and encountered limitations: The system excelled at processing 

both individual images and video streams with minimal latency. Its modular design facilitated 

the incorporation of various image processing applications, enabling tasks like object 

identification, scene understanding, and anomaly detection.  The distributed architecture and 

Kafka's message buffering capabilities ensured scalability, allowing the system to handle 

increasing data loads efficiently. 

However, performance evaluations revealed limitations. Processing complex image 

analysis tasks, especially on high-resolution imagery, inevitably introduced delays. 

Furthermore, the selection of image processing libraries impacted overall performance. While 

offering a comprehensive suite of functionalities, some libraries inherently have higher 

processing overhead compared to more specialized alternatives. 

C. Bottlenecks and potential areas for optimization: Performance analysis revealed 

several potential bottlenecks that could hinder near real-time processing capabilities. As 

previously mentioned, complex image processing tasks, particularly on high-resolution images, 

posed a significant challenge. This bottleneck originated from the limitations of the hardware 

infrastructure, emphasizing the need for powerful CPUs or GPUs for computationally intensive 

tasks. 

An additional bottleneck resided within the Kafka cluster itself. While Kafka excels at 

high-throughput messaging, message serialization and deserialization processes introduced 

minor delays, especially for large image data. To mitigate this, the system could explore 

alternative message serialization formats optimized for image data. 

Network latency also emerged as a factor, particularly in geographically distributed 

deployments. While the system functioned well within a localized network, wider distribution 

could introduce noticeable delays that might hinder near real-time requirements. Implementing 

techniques like content delivery networks (CDNs) for geographically diverse deployments or 

leveraging cloud-based Kafka clusters could address this issue. 
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D. Benchmarking Analysis: Our evaluation utilized a machine equipped with an Intel 

Core i7-8700 CPU, boasting 6 cores and 12 threads. This processor delivers a base clock of 3.2 

GHz, reaching speeds of up to 4.6 GHz with turbo boost. This configuration ensures efficient 

message routing within the system. 

To facilitate smooth multitasking and data handling during image processing, the system 

is equipped with 16 GB of DDR4 RAM. Furthermore, a dedicated NVIDIA GeForce GTX 

1070 GPU accelerates specific image processing tasks, particularly those that leverage 

hardware-based parallelism. This GPU contributes to potentially enhancing overall system 

throughput. 

The relationship between system throughput and the number of brokers in the Kafka 

cluster demonstrates a positive correlation initially. This is attributed to the distribution of 

incoming message processing across more nodes, enabling parallel processing and mitigating 

bottlenecks. However, as depicted in Fig. 4, this improvement reaches a plateau beyond a 

certain point due to the overhead associated with managing additional brokers within the 

cluster. 
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Fig. 4. Relationship between system throughput and number of brokers 

 

As observed in Fig. 5, exceeding a specific log file size threshold (approximately 50MB 

in this experiment) introduces performance overhead due to log management demands. This 

highlights the importance of adopting efficient logging practices to maintain optimal system 

responsiveness. 
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Fig. 5. Average throughput relative to the size of log files 

 

Conclusion. This modular near real-time image processing system, built upon Apache 

Kafka's robust messaging framework, showcases its adaptability for a wide range of image 

analysis applications. By prioritizing a service-oriented architecture, the system allows for the 

seamless integration of diverse image processing tasks, guaranteeing scalability and fault 

tolerance even under high workloads. However, achieving optimal performance in real-world 

scenarios necessitates careful consideration of several contributing factors. These factors 

include inherent image characteristics like resolution and complexity, the computational 

demands of the processing algorithms, underlying hardware limitations, and the potential for 

network latency to introduce delays. Future advancements in this system could involve 

exploring the integration of specialized hardware accelerators like GPUs to improve processing 

speed. Additionally, leveraging cloud-based infrastructure for on-demand scalability and 

investigating techniques to optimize network communication for minimal latency would 

further enhance the system's capabilities. 
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Представлено розподілену архітектуру для аналізу зображень у режимі реального часу, 

яка дозволяє уникнути обмеження традиційних централізованих систем при зростанні 

потреб опрацювання зображень. Запропонований підхід використовує Apache Kafka для 

реалізації роз’єднаного робочого процесу захоплення, опрацювання та розповсюдження 

зображень, що дозволяє паралельне виконання на кластері вузлів опрацювання. У цьому 

випадку Kafka слугує ядром інфраструктури зв’язку та потоку даних, забезпечуючи 

масштабованість, стійкість до відмов та високу пропускну здатність. Проведене 

оцінювання демонструє значне підвищення продуктивності у порівнянні з централізованою 

системою, підтверджуючи доцільність, переваги та обмеження використання Kafka для 

розподіленого опрацювання зображень. Проведено систематичний аналіз впливу розбиття 

топіків, конфігурації груп споживачів та робочого навантаження опрацювання на 

продуктивність. 

Розроблена модульна система опрацювання зображень у режимі реального часу на базі 

інфраструктури обміну повідомленнями Apache Kafka демонструє свою адаптивність до 

широкого спектра застосувань аналізу зображень. Застосування сервісно-орієнтованої 

архітектури забезпечує безперебійну інтеграцію різноманітних завдань опрацювання 
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зображень, гарантуючи масштабованість та стійкість до відмов навіть за високих 

навантажень. 

Показано, що досягнення оптимальної продуктивності у реальних сценаріях потребує 

ретельного врахування низки додаткових факторів. До таких факторів належать власні 

характеристики зображення, такі як роздільна здатність та складність, обчислювальні 

вимоги алгоритмів опрацювання, обмеження базового обладнання та потенційний вплив 

мережевої затримки. Майбутні напрямки розвитку цієї системи можуть включати 

дослідження інтеграції спеціалізованих апаратних прискорювачів, таких як графічні 

процесори, для підвищення швидкості опрацювання. Крім того, використання хмарної 

інфраструктури для масштабування за потребою та дослідження методів оптимізації 

мережевого зв’язку для мінімізації затримки дозволить розширити можливості системи. 

Ключові слова: Apache Kafka, опрацювання зображень, розподілене середовище, 

паралельне опрацювання. 
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