
ISSN 2224-087X. Електроніка та інформаційні технології. 2024. Випуск 26. С. 33–45

Electronics and information technologies. 2024. Issue 26. P. 33–45

© Zalizovskyi M., Huzynets N., 2024

UDC 004.451.5 DOI: https://doi.org/10.30970/eli.26.4

COMPARATIVE ANALYSIS BETWEEN REAL-TIME OPERATING

SYSTEMS AND SUPERCYCLES

M. Zalizovskyi, N. Huzynets

Electronic Computing Machines Department

Lviv Polytechnic National University,

12 Bandery St., UA-79013, Lviv, Ukraine

maksym.zalizovskyi.ki.2020@lpnu.ua, nataliia.v.huzynets@lpnu.ua

This article covers programming techniques in embedded devices, focusing on the advantages

and disadvantages of real-time operating systems. With the development of technology and the

growth of user requirements, approaches to programming change, and the question arises about

the feasibility of using different technologies, since the new ones are not always better in certain

cases. This article covers programming techniques in embedded devices, focusing on the ad-

vantages and disadvantages of real-time operating systems. With the development of technology

and the growth of user requirements, approaches to programming change, and the question arises

about the feasibility of using different technologies, since the new ones are not always better in

certain cases. Shedding light on the intricacies of selecting the most suitable technologies amidst a

backdrop of shifting paradigms.

Key words: RTOS, SuperLoop, embedded systems, architecture.

Introduction. Embedded systems are an integral part of the modern world, ensuring the

functioning of a wide variety of devices — from household appliances and automotive systems

to medical equipment and industrial automation. Software development for such systems re-

quires a special approach due to strict requirements for efficiency, reliability and real-time op-

eration. One of the popular approaches to the organization of embedded system software is the

super loop architecture. Although this architecture is simple and can be effective for small, not

very complex systems, it has significant limitations in the context of more complex applica-

tions.

Real-time operating systems (RTOS) solve the limitations of the superloop and other un-

derlying architectures by providing a more precise and reliable mechanism for hardware con-

trol and task allocation. RTOS allow developers to divide complex programs into separate

tasks with defined priorities and execution times, which ensures productive system operation

and high performance even in the most complex applications.

The need for development in the field of RTOS is due to the growing requirements of

modern technologies, such as autonomous vehicles, IoT devices and industrial automation sys-

tems. They require high reliability and accuracy, which can only be achieved with the help of

advanced RTOS. Developments in this area allow creating more complex and functional em-

bedded systems that meet the requirements of future innovative technologies.

The purpose of the study is to compare the initial and new architectural solutions, analyze

the feasibility of use and compare the performance of each of the solutions.

https://doi.org/10.30970/eli.26.4
mailto:maksym.zalizovskyi.ki.2020@lpnu.ua
mailto:nataliia.v.huzynets@lpnu.ua

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

34

Architecture. In embedded software development, there are several popular architectures

that help organize code for efficient device operation. In this article, we will consider several of

the main ones, list their advantages and disadvantages, and compare which tasks each method

is best suited for.

Superloop. The Super Loop architecture is one of the simplest approaches to software de-

velopment for embedded systems [1]. The main idea is to create a big endless loop in which all

the functions of the program are executed in turn. Each step of the cycle is responsible for per-

forming certain tasks, for example, processing data from sensors, performing calculations or

controlling actuators.

Advantages include the simplicity of the implementation of the superloop architecture,

which makes this approach attractive to beginners and those who want to quickly build a work-

ing system. A significant advantage is the high accuracy of delays, which in the execution of

tasks in a sequential cycle can provide precise control over the delay time between tasks.

Another benefit is low overhead, as the lack of multiple levels of abstraction and task

management means that overhead is minimal. And this, in turn, can be an advantage for sys-

tems with limited resources [2].

There are also disadvantages in this architecture. Among them - accumulation and com-

plication of the program. This means that over time, the number of functions performed in the

loop can increase, which leads to the complexity of the program and decrease in its speed.

Since all functions are executed in a single loop, it becomes difficult to manage priorities

and quickly change the order of execution, resulting in a loss of flexibility. There is no parallel-

ism in a superloop, tasks are performed sequentially, which can lead to a loss of efficiency in

systems where parallelism is essential. Over time, maintenance of the application can become

difficult due to the growth in size and complexity of the code, which indicates the difficulty of

maintenance. Some tasks may require tighter time control than others, which may be difficult

to implement within a single cycle.

Real-time operating systems. Real-time operating systems are designed to control hard-

ware and perform tasks at a specified and predictable time [3]. These systems are specifically

designed to ensure accurate and reliable performance of embedded systems where response

time and accuracy are critical.

Real-time operating systems provide accurate and predictable task performance, which is

critical for many embedded systems. Due to the controlled execution of tasks, the RTOS in-

creases the reliability of the system. Such a criterion as the flexibility of the RTOS allows de-

velopers to configure the system depending on the requirements, including task prioritization.

Due to the ability to skip tasks that cannot be performed at the moment, Real-time operating

systems allow the system to continue working without stopping, which means continuity of

operation and has a significant advantage over superloop.

Disadvantages include the following RTOS criteria. Implementation and configuration of

an RTOS can require considerable effort and expertise in embedded systems programming.

Commercial RTOSes can be expensive to purchase and maintain. Working with Real-time op-

erating systems requires experience and knowledge, which can be a barrier for beginners.

When choosing between an RTOS and a superloop architecture for embedded software

development, it is considered specific application examples that fit each architecture and ex-

plain why you should choose one over the other [4].

Real-time operating systems. When giving preference to real-time operating systems, it

is necessary to understand the important points why you should choose them. Consider the

situation when it is necessary to monitor several processes at the same time. This can be done

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

35

in several ways, one of these ways is the accumulation of microcontrollers, each of which will

observe its own part. This approach is too expensive. Another method is to use one microcon-

troller and poll the sensors one by one, and after polling, perform calculations. In this case, a

lot of time is wasted on calculations. This creates significant time gaps in which a critical situa-

tion may arise that requires an immediate solution [2]. Vital time (and such a situation is quite

real) will be spent on calculations. This served as one of the reasons for the creation of real-

time operating systems. They allow you to perform processes in parallel, even on single-core

microprocessors, where they are mainly used. For clarity, examples of areas and advantages in

which it is recommended to use RTOS are given.

Modern cars are equipped with numerous electronic systems that perform a variety of

tasks, from engine management to safety systems and infotainment systems. RTOSes allow

these systems to be controlled with high precision and predictability. For example, the elec-

tronic stability control (ESC) system must instantly respond to changes in vehicle driving con-

ditions, which requires high speed data processing and control.

In the field of aviation and space, there are always requirements for high reliability and

accuracy of task performance [5]. RTOS provides real-time control of the flight of aircraft or

spacecraft, which is very important for the safety of passengers and crew. Medical devices such

as cardiac monitors or insulin pumps must work with high precision and reliability, as the

health and lives of patients depend on it. RTOSes allow for predictable and accurate control of

these devices.

Superloop. Compared to the RTOS, the superloop is simple to implement and facilitates

device development. It is a simple and efficient choice for less complex projects that do not

require high flexibility and parallel processing, so it allows you to easily agree on a logical

sequence of actions.

Examples of areas in which it is recommended to use, as well as the advantages of using

superloop. In the field of home automation, for example, to control lighting or household ap-

pliances, simple embedded systems with limited capabilities are often used. The superloop

architecture is suitable for such systems due to its simplicity and ease of development. Many

portable devices: flashlights, watches, or small sensor devices often use superloop architecture.

These devices need simple and effective solutions, which he provides. Instrument Panels and

Displays: Industrial instrument panels or simple displays for displaying data often use the su-

perloop architecture due to its simplicity and low overhead.

Working principles of architectural solutions. Architectural decisions are the founda-

tion of any embedded system and define how the system will operate, manage resources, and

perform tasks. In the section, we will consider the principles of operation of various architec-

tural solutions used in embedded systems, including RTOS and superloop architecture [6].

These approaches have different features that affect the overall system design, efficiency, and

reliability.

Superloop structure. The architecture of a superloop consists in the sequential execution

of a set of actions from beginning to end in an infinite loop. This approach provides a clear

structure for the execution of tasks, but the only exception is hardware interrupts, which can

occur at any time. During an interrupt, the system executes a special piece of code, then returns

to the current location in the loop, continuing program execution. Fig. 1 shows the implementa-

tion principle of this architecture. Tasks 1 to 4 in the Fig. 1 are the notation of individual solu-

tions for the conditional system.

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

36

The loop continues without stopping until all the tasks in the sequence are completed, and

then it starts over. However, if the application crashes or hangs during a task, it can cause the

application to stop completely. There are various methods to avoid this condition, such as

checkpoints, but when an error occurs, the system is forced to start over instead of repeating

only the specific task [7].

This approach can be limiting in complex systems, but it has its advantages in simple ap-

plications where sequential execution of tasks is desirable or even necessary.

Fig. 1. Realizations of superloop architecture

The superloop architecture is often used in embedded systems, such as garden irrigation

control, due to its simplicity and efficiency. The irrigation system controller is responsible for

turning on and off the water valves according to the set schedule, monitoring the soil moisture

level, using sensors, and displaying the system status on the display.

Consider an example of a system in which the option of using a superloop is preferable.

The algorithm of the system is shown in Fig. 2. The task of this system is to measure the pa-

rameters of the environment and display the results on the screen, the diodes that signal the

start and end of the measurement also work. In this case, the task is important to us that some

sequence of actions is followed in a strict order and repeated for each measurement. We will

describe in more detail the algorithm of the above code. We will also analyze in more detail the

importance of implementing this particular architecture.

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

37

Fig. 2. Scheme of the conditional system algorithm

Consider the created block diagram for our automatic watering system. Let's assume that

we have a set of parameters that must be constantly monitored: soil moisture and the amount of

water that was poured into the soil. These parameters can be determined instantly and, depend-

ing on the results, either stop watering or continue. As we can see, the tasks for this system are

quite primitive and do not fall under real-time requirements, since we do not have any module

for exchanging parameters over the Internet or inputting parameters to which an instant reac-

tion should occur. In addition, these tasks do not take much processor time, which could lead to

a critical delay in the system. Parameters can be entered at system startup.

Firstly, turn on the LED, which signals the start of the device. The next step is to display

the current time and date on the display, this is useful for tracking the execution time of various

processes and for informing the user. Further, with the help of the function, the system receives

the parameters from the sensors, which are required for further processing. After receiving the

data, it is processed, transformed, deciphered and analyzed. Regulation of watering the lawn,

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

38

depending on the data received from the sensors. Next, the measurement results are shown on

the display. The superloop ends by turning off the LED to indicate the completion of pro-

cessing one cycle, i.e. one measurement. Adding a delay before starting a new cycle. This can

be useful for adjusting the frequency or timing of program execution.

Using a superloop in this code has its advantages. A superloop allows you to perform a

number of different functions in an infinite loop without blocking program execution. This

means that the program can continuously perform different tasks without waiting for the previ-

ous ones to finish.

Also, each stage of the superloop is executed in an infinite loop, which allows the pro-

gram to respond to changes during the next iteration of the loop. For example, in the given

case, the program can immediately respond to the requirements of lawn watering management

and display of data measured by sensors, since the complexity of implementing this system is

small. In general, the use of a superloop can be useful in many cases, especially in applications

that require a constant response to changes in the environment or external events.

Structure of real-time operating systems based on freeRTOS. RTOS are an important tool

for developing embedded systems that require multitasking, reliability, and precise time control

[8]. FreeRTOS is one of the most popular RTOS, widely used in various embedded applica-

tions. The structure of real-time operating systems based on FreeRTOS includes several key

components that ensure efficient management of tasks and resources:

Tasks: FreeRTOS allows you to create multiple tasks, which are independent blocks of

code that run simultaneously due to multitasking. Each task has its own priority, which deter-

mines its importance compared to other tasks. Tasks with a higher priority take priority over

tasks with a lower priority.

Scheduler: The scheduler in FreeRTOS determines when and which tasks should be exe-

cuted, depending on their priorities and current state. Tasks can be in different states, such as

running, waiting for an event, or inactive. The scheduler selects tasks to run according to their

priority and status.

Synchronization mechanisms: FreeRTOS provides various synchronization mechanisms

for the interaction of tasks with each other and with other system resources. Among them are:

Semaphores: Allows you to control access to resources and synchronize the execution of

tasks.

Mutexes: Provide exclusive access to resources, preventing them from being used simul-

taneously by multiple tasks.

Message queues: Allow tasks to exchange data or messages to coordinate their actions.

Timers: FreeRTOS supports timers that allow certain tasks to be executed at specified in-

tervals or under specified conditions. This is useful for tasks that need to be performed periodi-

cally or in real time.

Events (Event Groups): FreeRTOS has an event group mechanism that allows tasks to re-

spond to various events in the system. Tasks can wait for certain events and be executed after

they occur.

Memory Management: FreeRTOS supports both dynamic and static memory allocation

for tasks. This allows efficient use of limited memory resources, which is especially important

for embedded systems.

Hardware Support: FreeRTOS supports a variety of microcontrollers and architectures,

providing a wide selection of libraries and drivers for hardware interaction. This makes it easi-

er for developers to deploy FreeRTOS in different environments.

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

39

With these core components, FreeRTOS provides developers with a powerful toolkit for

building reliable, efficient, and scalable embedded systems. Ease of use and a wide range of

features make FreeRTOS popular with many users in the world of embedded systems.

Users of embedded systems expect the system to work smoothly and harmoniously, per-

forming multiple tasks at the same time. This may include, for example, instant reaction to user

commands, display of current data on the screen, performance of certain operations with

equipment, such as: control of sensors or switching of relays. In an ideal world, all of these

actions are performed simultaneously and without noticeable delays, resulting in a smooth user

experience.

FreeRTOS implements the parallel operation of the embedded system using multitasking,

which allows the program to break complex processes into several independent tasks. Each

task has its own priority and execution time, which ensures efficient allocation of processor

time between tasks. The FreeRTOS scheduler manages task priorities and their distribution,

allowing each task to run at the optimal time.

Thanks to context switching, FreeRTOS is able to quickly switch between tasks, which

allows you to support parallel work and efficiently use computing resources. FreeRTOS also

offers various synchronization mechanisms, such as semaphores and mutexes, which allow

tasks to interact with each other and with the hardware, preventing conflicts and improving

overall system performance.

Thus, FreeRTOS ensures stable and reliable operation of embedded systems, performing

tasks simultaneously and in a coordinated manner. This allows users to enjoy a fast and unin-

terrupted system that performs all its functions effectively without noticeable delays or crashes.

Analyzing the Fig. 3 [9], it becomes clear how parallelism is realized in RTOS and per-

ception of information by the user. First of all, each task is a certain sequence of actions that

are connected to each other by means of a goal that must be achieved. Which task should be

performed first and in which sequence is decided by the task manager, but the time for opera-

tions in the system is the same for everyone. With the help of such a technical solution, an illu-

sion is created for the user that all processes are performed simultaneously, although each pro-

cess takes a certain amount of time, which the user has previously set.

Fig. 3. Comparison of the real operation of microсontroller and user perception

Let’s consider another example of a system for which it is advisable to apply FreeRTOS.

As part of the task, it is necessary to monitor the operation of a meteorological station, which

analyzes parameters of humidity, pressure, temperature, direction and wind speed, and is regu-

lated via the Internet. This system works with the following main tasks.

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

40

The thermostat regularly receives data from temperature and humidity sensors in the

room, as well as, if necessary, from sensors of the external environment. This helps to deter-

mine the current state of the indoor and outdoor climate.

1) The received data is compared to the target temperature and humidity values set by

the user.

2) Depending on the need, the system controls the heating or cooling of the room.

3) The system displays the current system status and all necessary settings and target

values on the screen.

4) The user can change the target temperature and humidity values directly using the app

on the smartphone.

Let's consider the advantages of using the FreeRTOS operating system in this system.

Since this system has the potential for further expansion and improvement, it is important to

provide as flexible a code structure as possible to facilitate modernization and optimization of

functionality. Using the previous approach can lead to a significant increase in the amount of

code and create a situation where the system does not have time to respond to user commands.

The use of FreeRTOS, on the contrary, provides convenience in the modernization and

expansion of the code, and also allows you to effectively implement pseudo-parallel execution

of tasks. This makes the system more dynamic and ready for further development.

Fig. 4. General structure of FreeRTOS

The Fig. 4 [10] above shows how tasks are formed in the RTOS. First of all, all tasks are

distinguished according to what they should perform. Peripheral management, security, and

distribution of which tasks are entitled to execution are handled by the operating system core

itself. Let's check the expediency of using RTOS based on an example with specified times for

each task. Let’s take three tasks that require 30, 50 and 70 ms to complete. The context switch-

ing time will be 20 ms. Let's divide the tasks into several stages for complete completion. The

first task will be completed in 2 stages, the second in 3 and the last in 4 context switches. Let’s

consider in more detail. Each stage of context switching takes place in a given time interval. If

we consider that we have a task that systematically monitors the change of information entered

by the user in the system, then the reaction time on average will be 60 ms for three tasks. Since

it takes 20ms to switch to the task and check. With a given number of tasks and a known con-

text switching time, we can calculate how much time it takes to return to the operation we

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

41

need. When implemented by a superloop, the current time would be the time for all operations

to complete.

The main problem of choosing architecture. The challenge of choosing an architecture

for embedded systems is to determine the optimal approach to software organization that satis-

fies the specific requirements and constraints of the system. The choice of architecture deter-

mines how tasks will be executed, how the system will respond to real-time events, and how

resources will be allocated between different tasks.

There are major issues and aspects to consider when choosing between Superloop and

FreeRTOS. The superloop architecture is simple to implement because it involves executing

tasks in a fixed loop without multitasking. This can be an advantage for small and simple sys-

tems. FreeRTOS, on the other hand, requires more complex code organization, which can re-

quire more development and debugging time.

FreeRTOS provides better response to real-time events with the ability to prioritize tasks

and manage multiple threads. A superloop may not provide such a speed of response, since the

tasks are executed sequentially. FreeRTOS provides more flexibility in the allocation of re-

sources between tasks, which allows you to efficiently manage a system with different levels of

task complexity. A superloop, on the other hand, limits the possibilities of simultaneous work

with several tasks.

The choice of architecture can affect system power consumption. Choosing FreeRTOS

can be more energy efficient due to the ability to stop unused tasks and optimize their perfor-

mance. A superloop can consume more energy due to the continuous execution of the loop. If

the system needs to be expanded or upgraded, FreeRTOS can provide greater scalability with

its flexibility and threading capabilities. A superloop can become a limiting factor for more

complex systems.

A superloop architecture can be easier to design and maintain due to its simplicity, but it

can lead to complications in more complex systems. FreeRTOS may be more complex for ini-

tial development, but it can provide better long-term performance and reliability.

Ultimately, the choice of architecture for embedded systems is a matter of balancing the

system requirements against the capabilities of each of the available architectures. After weigh-

ing all the pros and cons of each approach, the developer must make a decision that best meets

the specific needs of the project.

Alternatives of real-time operating systems. In the world of embedded systems, there

are many different RTOS that offer alternatives to typical RTOSs and may be better suited for

specific tasks. Let's consider the main alternatives and their features.

Event-driven systems. Such systems focus on the processing of events that occur in the

system, instead of cyclical execution of tasks. This increases efficiency because resources are

only used when there is an event. Example. A system that responds to button presses or sensor

events can work more efficiently using an event-driven approach.

Operating systems with optimized power use (Power-aware RTOS). In such RTOSes,

special attention is paid to optimizing energy use, which can be important for battery-powered

devices. Example: an environmental monitoring system that collects data from various sensors

can work with such an OS to maximize the battery life of the device.

Systems with mixed criticality (Mixed-criticality Systems). Such RTOSes can provide

different levels of service for tasks with different levels of criticality, optimizing performance

and reliability. Example: A car's control system can have critical tasks, such as driving safety,

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

42

and less critical tasks, such as a multimedia system. Time-triggered RTOS. In such systems,

tasks are performed according to a clearly defined schedule, which ensures predictable and

reliable system operation. Example: Air traffic control systems can use this approach to ensure

flight synchronization and safety.

Systems with a high level of security (Safety-critical RTOS). Such systems are designed

with special emphasis on ensuring reliability and safety of operation, often used in industries

where errors can be dangerous. Example: medical equipment or industrial process control sys-

tems can use such RTOSs to ensure safety and reliability.

Each of these alternatives has its own advantages and is suitable for specific use cases.

The choice of RTOS depends on the requirements of the specific project, including needs for

performance, energy efficiency, security and reliability.

Tips for choosing architecture. When developing a system, it is important to consider

several key aspects to determine the optimal architecture - either a supercycle or a real-time

operating system (RTOS). By anticipating the needs and characteristics of the project, an in-

formed choice can be made that meets the requirements and resources of the system [11].

One of the key aspects is the analysis of tasks and their reaction times. If the system has

tasks that require precise responses in real-time, such as process control or signal processing,

an RTOS may be the better choice. On the other hand, simple tasks that do not require precise

time control can be successfully performed using a supercycle.

The second aspect is the resources of the system. It is important to consider the amount of

memory, processor power, and input-output capabilities. An RTOS may require more resources

compared to a supercycle, so it is important to ensure that the system can handle its load.

Consideration should also be given to the complexity of development and maintenance. A

supercycle may be simpler to implement and understand, which is especially useful for smaller

projects or beginners. On the other hand, an RTOS can simplify the management of complex

tasks and provide greater stability in meeting real-time requirements.

Finally, consider the future needs and expansion possibilities of the system. If there is ex-

pected growth in functionality or a need for greater accuracy in real-time response, it may be

wiser to choose an RTOS. It is important to balance all these aspects and choose the architec-

ture that best suits the specific needs and capabilities of the system. No option is universally

better, so it is important to make an informed choice, taking into account all circumstances

[12].

Conclusion. As a result of the study, an analysis and comparison of the expediency of in-

creasing the complexity of the code was carried out, to the time advantages that each of the

architectural solutions provides us.

Considering the problems of cyber-physical systems in our time, we are strongly connect-

ed with remote control over the Internet. When creating large-scale systems that must instantly

respond to user actions, it is advisable to use an RTOS operating system. It enables easy up-

grades and code improvements without mixing independent tasks with each other. It also gives

an advantage in the speed of the system's response, since the execution of tasks is carried out

pseudo-parallel, which allows us to quickly fulfill the user's request in real time.

Compared to RTOS, a superloop, which is simpler to implement, the time delay for the

reaction of user actions can be significant in large-scale systems, since each task in this archi-

tecture is used sequentially, and in case of unpredictable reactions of the system, the entire ex-

ecution process is stopped. Another disadvantage of the system is the difficulty of mainte-

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

43

nance. Over time, there is an accumulation of tasks performed by the system, therefore, accord-

ingly, the volume of written code in the loop becomes significant. This makes it difficult to

further modernize and improve the performance of the system. In addition to the ease of im-

plementation, it is possible to accurately track the time at which a particular task is executed,

since the task is executed from start to finish.

After comparing the timing diagrams, it becomes clear that for small tasks, RTOS can

cause more harm than good and complicate the creation of a system regardless of reliability

and the ability to perform tasks in parallel. However, in massive systems, the expediency of

using RTOS is justified due to the ease of modernization and independence of tasks. In small

tasks, the useful time to perform the operation is taken by context switching in the operating

system. In the case of long-term tasks, we need to be given the opportunity to perform and cal-

culate the next steps. Under such conditions, and especially when the speed of the system's

response to the user's actions is important, it is advisable to use RTOS.

On the basis of the conducted research, we can single out the following important points

for the correct choice of architecture before starting the implementation of the task. First of all,

it is necessary to foresee each task that the system should perform. After receiving the list of

tasks, it is necessary to set priorities and order of execution. In the case of the need for instant

system feedback from the user or the execution of several tasks at the same time, it is advisable

to use RTOS, because when implementing the superloop architecture, the program can give

priority to the execution of the process, but in no way execute the processes at the same time.

In the case of a small number of tasks that need to be performed, it is advisable to use a super-

loop architecture, since the tasks will be executed one after the other and will not waste time

switching contexts, handing over CPU time to another task.

REFERENCES

[1] Salehi M. Discovery and identification of memory corruption vulnerabilities on bare-

metal embedded devices / M. Salehi, L. Degani, M. Roveri, D. Hughes, B. Crispo //

IEEE Transactions on Dependable and Secure Computing. – 2022. – Vol. 20(2). – P.

1124-1138.

[2] Chakrabarty A. Exploring the Features of FreeRTOS and Testing the Performance Us-

ing Arduino - To Compare FreeRTOS Performance with ARTE / A. Chakrabarty, G.

Gayathri, U. S. Manaswini, R. Maheswari // International Journal of Management, En-

gineering and Technology. – 2023. – Vol. 1(1). – P. 23-41.

[3] Hee Y. H. Embedded operating system and industrial applications: a review / Y. H. Hee,

M. K. Ishak, M. S. Asaari, M. T. A. // Bulletin of Electrical Engineering and Informat-

ics. – 2021. – Vol. 10(3). – P. 687-1700.

[4] De Sio C. Evaluating reliability against SEE of embedded systems: A comparison of

RTOS and bare-metal approache / C. De Sio, S. Azimi, L. Sterpone // Microelectronics

Reliability. – 2023. – Vol. 150. – P. 115124.

[5] Restuccia F. ARTe: Providing real-time multitasking to Arduino / F. Restuccia, M. Pa-

gani, A. Mascitti, M. Barrow, M. Marinoni, A. Biondi, ... R. Kastner // Journal of Sys-

tems and Software. – 2022. – Vol. 186. – P. 111185.

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

44

[6] Seetha R. Benchmarking on RISC-V core and performance analysis of two open-source

real-time operating systems / R. Seetha, R. Nandakumar // IEEE International Confer-

ence on Communications. – 2023. – P. 381-393.

[7] Mamone D. On the analysis of real-time operating system reliability in embedded sys-

tems / D. Mamone, A. Bosio, A. Savino, S. Hamdioui, M. Rebaudengo // IEEE Interna-

tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT). – 2020. – P. 1-6.

[8] Lange A. B. HartOS-A hardware implemented RTOS for hard real-time applications / A.

B. Lange, K. H. Andersen, U. P. Schultz, A. S. Sorensen // IFAC Proceedings. – 2012. –

Vol. 45(7). – P. 207-213.

[9] Mohammad A. Real-time Operating Systems (RTOS) for embedded systems / A. Mo-

hammad, R. Das, M. A. Islam, F. Mahjabeen // Asian Journal of Mechatronics and Elec-

trical Engineering. – 2023. – Vol. 2(2). – P. 95-104.

[10] Mohammad, A., Das, R., Islam, M. A., & Mahjabeen, F. (2023). Real-time Operating

Systems (RTOS) for Embedded Systems. Asian Journal of Mechatronics and Electrical

Engineering, 2(2), 95-104.

[11] Singh J. P. Experimental analysis of performance paradigms for Real Time Operating

System (RTOS) / J. P. Singh, S. Yadav, V. K. Chauhan, J. K. Bhatia, P. K. Singh // 11th

International Conference on System Modeling & Advancement in Research Trends

(SMART). – 2022. – P. 1-5.

[12] Banbury C. Micronets: Neural network architectures for deploying tinyml applications

on commodity microcontrollers / C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thak-

ker, D. Gope, ... P. Whatmough // Proceedings of machine learning and systems. – 2021.

– Vol. 3. – P. 517-532.

[13] Chéour R. Microcontrollers for IoT: optimizations, computing paradigms, and future

directions / R. Chéour, S. Khriji, O. Kanoun // IEEE 6th World Forum on Internet of

Things (WF-IoT). – 2021. – P. 48-77.

ПОРІВНЯЛЬНИЙ АНАЛІЗ МІЖ ОПЕРАЦІЙНИМИ СИСТЕМАМИ РЕАЛЬНОГО

ЧАСУ І СУПЕРЦИКЛАМИ

М. Залізовський, Н. Гузинець

кафедра електронних обчислювальних машин,

Національний університет «Львівська політехніка»,

вул. С. Бандери, 12,79013 Львів, Україна

maksym.zalizovskyi.ki.2020@lpnu.ua, nataliia.v.huzynets@lpnu.ua

У роботі проаналізовано та здійснено порівняння доцільності збільшення складності

коду у контексті часових переваг, які надають різні архітектурні рішення. У зв'язку з про-

блемами кібер-фізичних систем сучасності, які сильно залежать від віддаленого керування

через Інтернет, дослідження акцентує увагу на важливості вибору архітектури для ство-

рення великомасштабних систем, що мають миттєво реагувати на дії користувачів.

mailto:maksym.zalizovskyi.ki.2020@lpnu.ua
mailto:nataliia.v.huzynets@lpnu.ua

M. Zalizovskyi, N. Huzynets

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 26

45

Дослідження визначає переваги використання операційної системи реального часу

(RTOS), оскільки вона дозволяє здійснювати легкі оновлення та покращення коду без по-

рушення незалежних завдань. Її псевдопаралельний механізм виконання завдань підвищує

швидкість реакції системи, забезпечуючи виконання запитів користувачів у реальному ча-

сі.

У порівнянні з RTOS, архітектура суперциклу може викликати значні затримки у реак-

ції на дії користувачів у великомасштабних системах через послідовне виконання завдань.

Крім того, виникають складнощі утримання системи через накопичення завдань з часом,

що ускладнює подальшу модернізацію та покращення продуктивності системи.

Після порівняльного аналізу діаграм часу стає зрозумілим, що в малих завданнях RTOS

може призвести до більшого збитку, ніж користі, і ускладнити створення системи, незале-

жно від надійності та можливості виконання завдань паралельно. Однак у великомасштаб-

них системах використання RTOS обґрунтоване через його зручність модернізації та неза-

лежність завдань.

На основі проведеного дослідження виділено важливі моменти для правильного вибору

архітектури перед початком впровадження певного завдання. Зокрема, модна передбачити

кожне завдання, яке система повинна виконувати, встановити пріоритети та порядок їх ви-

конання. У випадку потреби в миттєвій відповіді системи від користувача або виконання

кількох завдань одночасно рекомендується використовувати RTOS. Для випадків з невели-

кою кількістю завдань рекомендується використовувати архітектуру суперциклу, що за-

безпечує виконання завдань послідовно і не втрачає час на перемикання контекстів між

ними.

Ключові слова: ОСРЧ, суперцикл, вбудовані системи, архітектура.

The article was received by the editorial office on 14.05.2024.

Accepted for publication on 23.05.2024.

