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Optimization tasks are one of the hot nowadays challenges in science and techniques which can
be resolved efficiently by evolutionary algorithms. Although they have proved their efficiency in
neuroevolution they have to compete with other methods of neural network training. They began
to show their advantages with the development of computing technologies and proved themselves
well with problems where more traditional methods, such as gradient descent, cannot be applied. It
would be great to investigate already existing neuroevolutionary methods or develop new ones.

A different configuration of training parameters can have a significant impact on the result.
Thus the investigation in this direction is actual. Inspecting the influence of training parameters and
various strategies for tuning these parameters we found interesting and actual the challenge of
automatic adjustment of training parameters during training.

The main goal of the paper is an investigation of the training parameter’s influences on the
training results of two popular neuroevolution methods: the neuro-genetic evolution with a static
topology of the neural network and the neuroevolution method of augmenting topologies - NEAT.
A mutation step (mutation strength) is a studied parameter for the first method, and for the NEAT
we have two parameters: a mutation step and a probability of structural mutations. The proposed
strategy for the automatic adjustment of the studied parameters aims to solve the problem of
reaching a local extremum, which didn’t allow to achieve the best possible results of training.

All experiments were performed on the same task of a rocket controlling the flight from the
Earth to the Moon, which requires enhanced accuracy of the neural network for successful training.
The results of the training were analyzed according to the following indicators: average fitness
value in the generation, best fitness value in the generation, and percentage of successful individuals
in the generation. The conducted experiments have demonstrated that the requirements with high
accuracy force usage of lower values of the mutation strength for traditional genetic algorithms, but
this creates risks of getting stuck in local extrema or convergence to a suboptimal solution.

The NEAT experiments have shown that the task’s requirements for high accuracy didn’t allow
the best results to be achieved. The proposed strategy for decreasing the mutation strength and the
probability of mutations was able to reduce the risk of convergence to a suboptimal solution in both
methods. Generally, this approach was able to justify itself. Further investigations of this strategy
on par with already existing approaches might reveal other advantages which should be investigated
more deeply.
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Introduction

There are a lot of developed methods which offer different approaches to artificial neural
network training. The neuroevolution methods involve training the neural networks by genetic
algorithms updating the edge weights of neural networks or even their structure. In some
scenarios, neuroevolution methods are being used effectively with reinforcement learning to
resolve the problems related to artificial life or evolutionary robotics [1]. It’s also been said, that
some reinforcement learning problems, might be resolved by neuroevolution methods that might
even outperform traditional RL approaches [2].

Neuroevolution, at its core, is an optimization technique that uses a probabilistic approach
to evolving neural network architectures and weights [3-4]. Unlike conventional methods like
supervised learning, neuroevolution operates in a more dynamic and self-adapting manner,
making it particularly suitable for tasks where the optimal structure of the neural network is not
known beforehand or may change over time. This adaptability is particularly advantageous in
complex and dynamic environments, where traditional approaches may struggle to converge
efficiently.

Traditional neuro-genetic evolution uses basic principles of genetic algorithms to change
only weights in structures of predefined neural networks [5]. NeuroEvolution of Augmenting
Topologies (NEAT) methods extend this by introducing new mechanisms of evolving ANN
structure simultaneously with its weights [6]. This innovation addresses one of the key
challenges in neuroevolution, allowing the algorithm to explore a broader solution space and
discover more sophisticated architectures.

As with machine learning methods, the success of neuroevolution depends on a careful
selection of parameters. Parameters such as mutation rates and crossover rates play a pivotal role
in shaping the evolutionary process and ultimately influencing the performance of the evolved
neural networks. Striking the right balance is crucial, as overly aggressive mutations may hinder
convergence, while conservative settings may impede the exploration of diverse solutions.

To optimize the performance of neuroevolution, researchers have explored strategies to
dynamically adjust these parameters during training. Adaptive methods, such as those inspired
by the concept of self-adaptation in evolutionary algorithms, have shown promise in achieving
a more fine-tuned and efficient convergence [7-8]. These dynamic strategies contribute to the
adaptability of neuroevolution, allowing it to navigate the evolving landscape of problem
complexity.

While there exist some methods of dynamic adjusting of training parameters, they lack
considering fitness values during training, and also usually are applied to traditional
neuroevolution, not considering other methods. In this work, we tend to analyze how mutation
parameters affect the training process for both neuro-genetic evolution and NEAT, and based on
that, propose a strategy for dynamically changing these parameters during training.

Methods and materials

Running a bunch of experiments for each settings configuration we support the
investigation of the dependence of training results on parameters. Keeping a certain number of
results for the same experimental conditions will allow us to get more accurate results.

The chosen task for training is defined as the Moon's rotation around the Earth in a 2-
dimensional simulation implemented with the Unity game engine [9], a neural network needs to
control the rocket flight from the Earth to the Moon. The tested population is more fitted when
the rocket is coming near the Moon which could be defined as the fitness function as f = 1/d,
where d is the distance between the rocket and the Moon. During a population selection for the
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next generation, we count on the highest value of fitness function because it means that the rocket
is the closest to the Moon. If the rocket reached the Moon the individual would be considered
successful. The distance from Earth to the Moon and the size of the Moon in the calculation are
close to real and require high precision which could be provided by low values of mutation
strength and probability.

The architecture of the trained neural network has 8 input nodes and 3 output nodes that
will be considered for further analysis: the fitness of the best individual in the population, the
average fitness of the population, the percentage of successful individuals in the population, and
the number of epochs. During multiple simulations for each training configuration, we have
counted the training that failed due to hitting local extrema.

For both neuro-genetic evolution and NEAT we use real number representation for
chromosomes. It means that both methods use uniform perturb mutation: the weights of the
neural network edges are changed by adding a random number to its previous value. Controlling
the limits on how much this value can be perturbed, we use the mutation strength, also known as
the mutation step, and define it as a fraction of max possible weight value.

Parameter settings

For the neuro-genetic algorithm, we use the following configuration: size of population 30,
crossover probability 50%, probability of gene mutation 5%, mutation strength 0.05. We use a
neural network with 1 hidden layer of 7 nodes for this method.

For NEAT we use a configuration that overall is similar as it is in the original work [6].
The population’s size equals 100. The coefficients for measuring compatibility were ¢ = 1.0, ¢»
= 1.0, and c3 = 0.3, the compatibility threshold was equal to &; = 3.0. The champion of each
species with more than five networks was copied into the next generation unchanged. There was
a 30% chance of a genome having its connection weights mutated, and each weight had a chance
of mutation 5%, in which case each weight had a 90% chance of being uniformly perturbed and
a 10% chance of being assigned a new random value. Mutation strength was 0.005. In each
generation, 25% of offspring resulted from mutation without crossover. The interspecies mating
rate was 0.1%. The probability of adding a new node was 1.5% and the probability of a new link
mutation was 2.5%. For all experiments, we start to evolve neural networks from structures that
don’t have hidden nodes.

For both methods, we used hyperbolic tangent as a transfer function for all nodes. All these
parameters are taken as a basis and only the investigated parameters are changed in different
experiments.

Dynamic mutation parameters strategies

The main idea of changing parameters during training is detection of the fitness stagnation.
Fitness stagnation can be defined as the absence of improvement in the best or average fitness in
the population for a certain number of generations in a row. When stagnation is detected, we will
decrease mutation parameters’ values. So, starting with parameters that have higher values, we
will use the exploration approach, and decreasing it we will gradually switch to exploitation.

For neuro-genetic algorithms, we will decrease the mutation strength and/or probability,
while other parameters remain constant. Later experiments have shown, that for neuro-genetic
algorithms it makes sense to decrease parameter values after just a few generations without
fitness improvement, otherwise decreasing it after a higher number of epochs can prolong the
training process without much positive effect.
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Similar to a NEAT method, but first we decrease the probability of structural mutations:
those are node and connection mutations. Along with this, we decrease random weight
mutations, since changing weights’ values to those that completely differ from previous ones can
harm not only individual but also species' effectiveness. By decreasing the chances of structural
mutations we stick more to weight mutations, and after the structural mutations chances reach a
threshold of 1E-4, we stop to execute them. Instead, we perform only weight mutations for
evolved structures, and with the same principle as for the neuro-genetic algorithm, start to
decrease the mutation strength. The picked number of epochs for stagnation detection here is
greater than in neuro-genetic algorithms since structural mutations require more time to search
for an optimal solution.

Results and analysis

In brief, most of the results are expected but the introduced strategy shows a significant
increase in the required epochs number, so may not be justified for every task. But in this task,
it shows good results since it achieves its main goal to reduce the risk of falling into local
extrema.

Investigation of mutation strength for neuro-genetic evolution. The charts in Figure 1 and
Figure 2 show the training process with 0.05 and 0.001 mutation strength, all other parameters
remain the same. It’s clear that a lower mutation strength demonstrates better results: while a
high strength value shows only 0.4 average fitness value and 30% of successful individuals, a
low mutation strength allows one to reach 1 fitness and 100% successful individuals. Figure 3
shows how mutation strength affects the results of training. At the same moment, for all strength
configurations training reaches its best results nearly in 20 epochs. Even though we received
better results, for the low values of mutation strength, it needs to be noted, that for experiments
with a low mutation strength the risk of failing the experiment appears: for 0.0025 strength 10%
of experiments failed and for 0.001 strength 30% of experiments were failed resulting in
significantly lower results than average. It can be explained by the problem of falling into local
extrema, or in other words finding a suboptimal solution, which is the reason why training gets
stuck at a certain point and doesn’t improve after that.
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Fig. 1. Training process for neuro-genetic evolution with a static mutation strength 0.05
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Fig. 2. Training process for neuro-genetic evolution with a static mutation strength 0.001
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Fig. 3. Dependence of successful individuals (the percentage of hits) and best reached average fitness in
population on used mutation strength. Dashed lines consider experiments that failed due to getting stuck
in a local extrema

Investigation of dynamic mutation strength strategy for neuro-genetic evolution. In this
experiment, the mutation strength starts evolving from 0.05 and decreases this value by half for
every 5 generations in a row that haven’t shown improving the average fitness value. Figure 4
depicts the training process with this configuration. Noticeably, the required amount of epochs
increased significantly, nearly to 150 epochs, but all experiments were successful: reached 1
average fitness and 100% of hits in the population, also no failed experiments due to falling to
local extrema were detected.
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Fig. 4. Training process for neuro-genetic evolution with a dynamic mutation strength

We consider this result as successful, although the approach of decreasing the parameters
with every generation [7] may show the same result with fewer generations needed. But here we
should admit the advantage that in our approach we don’t need to know in advance the required
number of epochs and minimum value of the parameter.

Investigation of mutation strength for NEAT. Using a similar approach as in neuro-genetic
evolution, we tried to investigate how weight mutation strength affects the training results. One
of the best results was achieved with a configuration of 0.005 mutation strength, 10% probability
of random weight and 90% probability of perturbed weight mutation. Other parameters remain
as default. The results are shown in Figure 5. We observe that only 86 percent of successful
individuals can be reached and 0.89 of average fitness at best. On average, 64% of successful
individuals and 0.64 of average fitness were observed. This is not the best result can be explained
by the fact that introducing new structural elements to the neural network complicates the process
of weight tuning.

Investigation of dynamic mutation strength strategy for NEAT method. For the dynamic
approach in NEAT, we decrease the parameter values for each 20 generations in a row without
average fitness improvement. We start with a mutation strength of 0.05, other parameters are
default. Similar to experiments with neuro-genetic evolution, the number of required epochs
slightly increased, but the desirable results were finally achieved: we could achieve 100%
successful individuals and 1 fitness value for 80% of the experiments, but the rest of experiments
still demonstrated the problem of falling into local extrema. An example of the training process
is depicted in Figure 6.
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In this paper, we investigated the parameters and mutation influence on the results of neuro-
genetic evolution and NEAT training. We used the average fitness in the generation as the main

metric for the results of experiments. Experiments with neuro-genetic evolution demonstrated
that for the best possible results, we need to use the mutation strength with low values, but this
may cause the risk of getting stuck in a local best solution, which leads to the inability to achieve
the best results in all experiments. The same problems were observed in experiments with the
NEAT method, where the desired results couldn’t be achieved without additional modifications.
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The proposed strategy with decreasing mutation parameters’ values has shown good
results: although it increased the number of needed generations significantly, it allowed for
improvement of the training results. For neuro-genetic evolution, we managed to achieve the
best fitness guaranteed in all experiments. Also, we didn’t need to tune mutation strength
manually, since this strategy allows us to start with high mutation strength values and
automatically decrease it to the needed level. A similar strategy also worked for the NEAT
method, allowing to reach the desired results in 80% of the performed experiments.

The proposed strategy may not work optimally for every task since it requires more epochs
for training, but it offers its benefits, which were mentioned above. The next steps of the
proposed investigation might be a comparison with other strategies for dynamically adjusting
training parameters and the ability to combine our approach with other methods which can lead
to effectiveness improvement in resolving the various tasks.
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BILJIMB BEJIMYUHU TA HMOBIPHOCTI MYTAIIIl HA HABYAHHS J1JIS
TPAAUIIMHOI'O TEHETUYHOI'O AJITOPUTMY TA NEAT. CTPATEI'ISI 3SMIHU
MAPAMETPIB MYTAIII ITPU BUSABJIEHHI CTATHALII MIPUCTOCOBAHOCTI

B. lIpeueas, P. lllyBap
Jlveiecokutl nayionanvuuil ynieepcumem imeni leana Opanka,

eyn. [Apacomanosa 50, 79005 Jlveie, Yxpaina
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Ha naHuit MOMEHT icHye 3HaYHa KUIBKICTH METOJNIB Hedpoesomromii. B Toit uac, komwm
TEHETHYHUM alrOPUTMaM JOBOJHUTHCA KOHKYpPYBaTW i3 IHIIMMH METOAAaMH TpPEHyBaHHS
HeHpoMepek, MepUIi MoYand IEMOHCTPYBAaTH CBOI IEpeBard 3 PO3BUTKOM OOUYMCIIOBAIHHOT
TEeXHIKA 1 1oOpe cebe MpOSBWIM y 3amadax, 3 SKAMH OUTBIN TpagumiiHI METOIH, TaKi AK
TPaJi€eHTHUH CIYCK, HE MOXXYTh 3aCTOCOBYBAaTHCh. Lle TOBOpPHUTH MPO AOLUIBHICTH MOJATIBIIOTO
PO3BUTKY IIbOTO HANPsMKY. OKpiM po3poOKH HOBUX METOIIB HEHPOESBOIIIONIT, JOCITIPKYIOTHCS BKE
icHyroui. Pi3Ha KOH(}irypamis nmapameTpiB HaB4aHHS MOXKE€ MaTH 3HAYHUI BIUIMB Ha pe3yJbTar, i
OKpIM BHMBYEHHS BIUIMBY LIMX ITapaMeTPiB TaKOX PO3POOIIIOIOTHCS pi3HI cTparterii mindopy mux
napameTpiB a00 HaBIiTh iX aBTOMATUYHOI 3MiHH ITiJT YaC HaBYAHHS.

Mertoro nanoi poOOTH € TOCTITUTH BILIMB IapaMeTpiB Ha Iepelir HaBYaHHS JBOX MOMYJIIPHIX
METOZIB HEHPOEBOJIOLII: TPaIUIIHHOTO TCHETHYHOTO aJrOPUTMY 31 CTaTHYHOIO TOIOJIOTIE0
HeHpoMepeki Ta MEeToAy HeifpoeBoromii ayrMeHTyrounx tonoioriii — NEAT. B nepmomy MeToai
JIOCHIPKyBaHUM MapameTpoM Oyne BenmnumHa myTaudii, a it NEAT — Benmumaa myTamii i
WMOBIPHOCTI CTPYKTYpHHX MyTariif. OKpiM TOTo, Uit 000X METO/IB 3allPOIIOHOBAHO CTPATETIiI0
JMHAMIYHOT 3MiHH JOCITI/PKYBaHUX ITapaMeTpiB, sSKi TOBUHHI BUPIIIUTH NpoOJIeMy HOTPAIUISTHHS B
JIOKATBHUI eKCTPEeMyM, IO 3arpoKy€ OTPUMAHHIO He HaWKpallMX MOXIIMBHUX pe3YJIbTaTiB
HaB4aHHs. Bei ociiay npoBouich Ha OAHII NPUKIIa =il 3a1a4di 3 KepyBaHHSIM IOJIBOTY PaKeTH
Bin 3emii g0 Micsis, ska BHMara€ 3HAYHOI TOYHOCTI TPEHOBAHUX Bar HEHpOMepexi st
YCTIIHOCTI HaBYaHHSA. Pe3ynbTaTH HaBYAaHHS aHAII3yBANCh 33 TAKMMH MOKA3HUKAMH: CEPEIHS
MIPHUCTOCOBAHICTh B TOKOJIIHHI, HaiKpamia MPUCTOCOBAHICTh B IOKOJIHHI, BiICOTOK YCIIIITHUX
ocobuH B mokoiiHHI. [IpoBeneHi MOCHITM MPONEMOHCTPYBAIH, IO TPH HASBHOCTI BUMOT 0
BHCOKHX ITOKA3HUKIB TOYHOCTI, HEOOXITHUM € MaJli 3HAYCHHS BEIMYMHHU MYTAIlil IS TPaAUIiiTHIX
TeHETUYHHX aJITOPUTMIB, ajle [Ie CTBOPIOE PU3UKU NOTPAIUITHHS B JIOKAJIbHUH eKkcTpeMyM. Jlociiau
NEAT mnoxka3any, 110 BUMOTH 337a4i 0 3HAYHOI TOYHOCTI HE MO3BOJISIIM JOCATTH HaKpaiiux
pe3yabTaTiB. 3anpONOHOBAHA CTPATETis 31 3MEHIIICHHS BETMYMHH MYyTallii Ta IMOBIPHOCTI MyTaIliit
3MOIJIa 3MEHILIUTH PU3UK CXOPKEHHS 10 CyOONTUMANBHOTO PillieHHs B 000X METOJIaX, TOMY TaKHUi
MiAxig BOiloMy 3Mir cebe Bumpapatd. Ilomampmni mocmimkeHHS i€l crpaTerii pasom i3
MOPIBHSIHHSAM 13 1HIIMMH 1CHYIOUHMH TT1IX0IaMH MOXYTh ITPOSIBUTH 1 1HIII CBOi IepeBary, i ToMmy
MMOKa3YIOTh JOIUIBEHICTH MPOJOBKEHHS MOUTYKIB.
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