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In this research, we have tested the AMSGrad optimization learning method for a
multilayered neural network using the logistic function. This function describes the doubling
process of the local minima number and the Fourier spectra for the error function. As a result of
neural network retraining, the learning error function on each neuron is characterized by a set of
wave vectors of different periodicities. The average value of the learning error for all neurons can
be considered an average value for all existing periodicities. At the same time, the wave vector of
the total oscillation can take both commensurate and incommensurate values. The appearance of
local minima is shown to be caused by the non-homogeneous learning of the neural network,
which is related to the retraining of individual neurons. As the local minimum number increases
with the learning rate, so does the number of such neurons.

The AMSGrad optimization method reduces the number of retrained neurons by controlling
the exponential rate of average gradients decay and the square of the error objective function
gradient. In other words, the learning rate of each neuron is corrected, which removes this
system's degeneracy by preventing the processes of each neuron's retraining.

Keywords: multilayered neural network, AMSGrad method, local minimums, block structure.

Introduction

Retraining is one of the crucial problems that arise during the learning process of neural
networks. The retraining process occurs when the error function passes the global minimum. In
addition, when the error function passes the global minimum, local minima appear. These local
minima are caused by the non-homogeneous neural learning process in multilayered neural
networks. The optimization methods of neural network learning are used to eliminate these
shortcomings. In particular, they include Adam, AdamMax, AMSGrad, Adagrad, and other
optimization methods [1]. For example, in the AMSGrad optimization method and Adagrad,
the error function at each step should be considered as a set of learning errors on each neuron.
The learning error on a single neuron is described by its functional dependence. It means that
the learning error at a given speed and step is a symbiosis of all neurons' errors involved in the
learning process. These functional dependencies of the learning error on each neuron are, as a
first approximation, periodic functions with different periods.

The reason is that the AMSGrad optimization method, like Adagrad, uses a different
learning rate for each parameter at each step [2]. Therefore, we first get the AMSGrad update

© Sveleba S., Katerynchuk I., Kuno I. et al. 2024


https://doi.org/10.30970/eli.25.
mailto:incomlviv@gmail.com

S. Sveleba, I. Katerynchuk, I. Kuno et al. 43
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

for each parameter and then vectorize it. In other words, in its updating rule, AMSGrad
changes the overall learning rate alpha at each step for each parameter based on the previous
gradients that have been calculated. That is why each step's error function should be considered
a set of learning errors on each neuron. It is well known that when learning with a "teacher,"”
the learning error is calculated as the standard deviation for neural networks. It means that
these functional dependencies of the learning error on each neuron are, to a first approximation,
periodic functions with different periods. Therefore, these functional dependencies can be
characterized by a spectrum of wave vector values. These vectors have rational values (i.e.,
they describe commensurate fluctuations determined by the number of neurons in a layer and
the number of hidden layers). The total value of the wave vector for such an ensemble of
periodicities can be either commensurate or incommensurate.

The appearance of such a condition was previously observed in low-dimensional systems
with a disproportional superstructure in its stochastic mode [3]. The appearance of such an
incommensurate superstructure mode is caused by an increase in the anisotropic interaction
strength, which leads to a decrease in the interaction between incommensalities (solitons). As a
result, appear various superstructure periodicities (i.e., a periodic structure with different
distances between solitons), and the average value of the incommensurate wave vector along
such a structure takes on an incommensurate value. The resulting phase is incommensurate and
hence chaotic.

Goals

As we know, in a multilayered neural network, all the neurons of the previous layer
influence the weights correction of one neuron. Since this influence on the learning rate
becomes heterogeneous when reaching a global minimum, it can lead to inhomogeneous
learning. Such inhomogeneity should be detected using optimization methods based on the
algorithm that updates exponentially moving average (m:) and square gradients (v;) based on
previous values. In other words, such multilayered neural networks should be characterized by
the appearance of a block structure, which is defined by the coexistence of both a chaotic state
and a state with multiple harmonics.

This study aims to analyze the learning error function dependence on the learning rate to
identify any such neural network state. According to the learning algorithm, such a state will be
studied for a multilayered neural network using the AMSGrad optimization learning method.

The AMSGrad method is an advanced version of the Adam method designed to improve
the convergence properties of the algorithm by avoiding large abrupt changes in the learning
rate for each input variable. Technically, the descent gradient is called a first-order
optimization algorithm because it explicitly uses the first-order derivative of the objective
function.

The AMSGrad algorithm is known [4, 5] to update exponential mean gradient and
gradient square, where the hyperparameters g1 and g2 (whose values vary in the interval [0,1])
control the exponential rates of decay of these mean gradients. The moving averages
themselves are estimates of the 1st moment (average) and 2nd moment (non-centered variance)
of the gradient [6].

In this way, AMSGrad leads to a non-increasing step size, which avoids the problems
experienced by Adam. The authors of [4] also remove the offset step used in Adam to simplify
the process. The complete AMSGrad update without corrected estimates can be described as
follows:
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where g, is the goal function (error function) gradient, m, - is the is exponentially moving
average, Vv, - is the square gradients, V, - is the maximum of the square gradients, N - is the
iteration number, and ¢ - is the correction parameter.

At the same time, this raises the question of how the iterations’ numbers affect the
existence of chaotic states. Whether an increase in the iterations' number could bring the
system out of the stochastic state, as long as we are in the range of changes in the learning rate
corresponding to this state of the neural network? Does increasing the number of iterations lead
to the disappearance of the neuronal retraining process?

Research methods

A program defining a multilayered neural network with hidden layers for recognizing
printed digits was written in a Python programming environment. The array of each digit
consisted of a set of "0" and "1" of 4x7 size. A sample of each digit contained a set of 4
possible digit distortions and a set of 3 arrays that did not correspond to any of the digits. Thus,
the digit "0" will have the following array of values x:

Numtl1 =1{0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Numt2=11,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Numt3 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Num01=(1,1,1,1,1,0,0,1,1,00,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,1]
Num02 =[1,1,0,4,1,0,0,1,1,0,0,4,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,1]
Num03=[1,1,1,1,1,0,0,1,0,0,0,4,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,1]
Num04=11,1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,0,1,1,1,1,1]
Num05=1[1,1,1,1,1,0,0,1,1,0,4,1,1,0,0,4,1,0,0,1,1,0,0,1,1,1,1,1] ,

an array of values in:
NumOY = [[0],[0].[0].[1].[1].[1].[1].[1]]

This program described a neural network with 3 hidden layers with 28 neurons in each
layer. The choice of the hidden layers and neurons number in each layer was determined by the
smallest learning error for digit recognition. According to [6], this is a three-layer neural
network with 28 neurons in each layer. The parameters 1 and B2 values were selected as
proposed in [7]. According to [8], the activation function was chosen as sigmoidal.

The following code was used to implement a given optimization method:

for i in range (hum - 1):
layer_errors.append(layer_deltas[i].dot(synapse[num - 1 - i].T))
layer_deltas.append(layer_errors[i + 1] * sigmoid_output_to_derivative(layers[num - 1 - i]))
layer_deltass=layer_errors[i + 1] * sigmoid_output_to_derivative(layers[num - 1 - i])
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# m(t) = betal(t) * m(t-1) + (1 - betal(t)) * g(t)
m = betal**(age+1) * m[i-1] + (1.0 - betal**(age+1)) * layer_deltass
# v(t) = beta2 * v(t-1) + (1 - beta2) * g(H)"2
v = (beta2 * v[i-1]) + (1.0 - beta2) * layer_deltass**2
# vhat(t) = max(vhat(t-1), v(t))
vhat = max(max(vhat.reshape(-1,1)), max(v.reshape(-1,1)))
dd= m/ np.sqrt(vhat+ 1e-8)
d.append(dd)
for i in range (num):
synapse[num - 1 - i] -= alpha * (layers[num - 1 - i].T.dot(d[i]))

The following logistic function was used to analyze the error function:
X,., =alpha—x, —x2

when n is a step, and alpha - a parameter that defines the learning rate.
Its fixed points are:

X, =-1t,/alpha+1

eigenvalues that can be calculated as follows:

p,, =1F2,/alpha+1

The choice of a given logistic mapping is based on the fact that it describes the doubling
of the oscillation frequency [9]. In our case, this process is caused by the emergence of local
minima when approaching the global minimum. For one-dimensional mappings, there are 2
ways to change the stability of a fixed point when the point multiplier is p=+ 1 and p = - 1.
However, the number of associated bifurcations (doublings) is much larger. It is explained by
the fact that they often involve more than one fixed point. Such a situation corresponds to 4
variants of bifurcations: tangent bifurcation (fold, saddle-node); transcritical bifurcation; fork-
shaped bifurcation (symmetry loss bifurcation); doubling bifurcation.

Experimental data results. The influence of learning speed

Considering that p1 = 0.9 and B2 = 0.999 within 100 epochs, Figure 1 shows the
dependence of the logistic error function on the alpha parameter and the Fourier spectra. The
resulting branching diagram indicates that the entire studied range of alpha changes
(0.000001~+ 0.008) can be divided into 4 parts: 1) a range of sharp decrease in the error
function value (alpha=0.000001+0.00002) - no retraining; 2) a range of low-variable,
monotonic behavior of the error function (alpha=0.00002+0. 00025) - satisfactory learning
process; 3) the range of bifurcation of the error function behavior (alpha=0.00025+0.00047) -
retraining process; 4) the range of chaotic non-monotonic behavior of the error function from
alpha (alpha=0.00047+0.008) - the appearance of chaos. When p2=0.999 with alpha
=0.00045, the system falls into the range of retraining, followed by the appearance of
harmonics. (This process is weakly manifested in the Fourier spectra at $2=0.999 and alpha
=0.0004 (Fig. 1, b)).
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Fig. 1. Branching diagram (a) from learning rate alpha, Fourier spectra (b) - under satisfactory learning
and retraining, and (c) - under chaos conditions, within 100 epochs, $1=0.9, $2=0.999, for the digit "0",
using the AMSGrad optimization method.

Unlike the multilayered neural networks where optimization methods were not used, in
the considered multilayered neural network, when using the AMSGrad optimization method,
transitions cascades to and from the chaotic state are traced with increasing learning rate. Their
number increases with the alpha-growing learning rate (Fig. 2).

When B1=0, the value of the moving average gradient m; = layer_deltass, i.e., for a given
multilayered neural network, will be equal to the value of the weight correction delta. The
weight correction will be described by the following equation:

synapse[num - 1 - i] -= alpha * (layersfnum - 1 - i].T.dot(layer_deltas[i] /
np.sqrt(vhat+ 1e-8)))

In other words, the difference between a regular multilayered neural network with the
backpropagation method of learning error and multilayered neural networks using the
AMSGrad optimization method is the presence of the multiplier 1/np.sqrt((vhat)+ 1e-8). In
regular multilayered neural networks, the weight correction is described by the following
equation [7]:

synapse[num - 1 - i] -= alpha * (layers[num - 1 - i]. T.dot(layer_deltas][i]))

The retraining process is accompanied by a passage through a global minimum and a
doubling of local minimum numbers. This process is particularly well observed at small epoch
values (Fig. 2). The process of blocking the doubling of the local minimum numbers, which
makes it impossible for the system to transition to a chaotic state, also begins to be observed
here (Fig. 2).
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With an increase in the number of epochs (N), a decrease in the gradient of the error
function, and an increase in the value of the equation (1- (B1)N), under the condition of small
values of (1- B2), cause the ratio of the vectors of the first and second moments to begin to
favor the second moment. It is manifested at small epoch values (N=5 at alpha>0.0017; (Fig.
2)). Thus, the optimization process manifests itself with an increase in the number of epochs,
leading to a decrease in the gradient as it approaches the global minimum. It is reflected in the
approximation of the value of the logistic error function to zero with an increase in the number
of epochs (see Fig. 1 and Fig. 2 for branching diagrams).
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Fig. 2. Branching diagram (a) - from the learning rate alpha, Fourier spectra (b) - under chaos conditions,
and (c) - in the enlarged version, (d), (e), (f) - branching diagrams from the learning rate alpha in the
enlarged version, under the condition of 5 epochs, p1=0.9, p2=0.999, for the number "0",
when using the AMSGrad optimization method.

The Fourier spectra corresponding to the maximum possible learning rate alpha show the
coexistence of chaotic and periodic structures (Fig. 2 b, c). In other words, according to the
branching diagram, the goal error function is characterized by the existence of a block
structure, which (block), in turn, is characterized by existing of a corresponding number of
local and global minima (Fig. 2, d-f).various blocks characterized by different numbers of local
and global minima. Thus, the process of doubling the number of local and global minima is
linked to the hyperparameter p1, and the hyperparameter p2 causes the emergence of a block
structure, i.e., it performs the process of gradient rarefaction.

Thus, when applying the AMSGrad optimization method to a multilayered neural
network (a three-layer network with 28 neurons per layer) for recognizing printed digits, it was
found that the hyperparameter B1, which describes the contribution of the linear gradient of the
error function and is the basis of the power function of the number of epochs, is associated with
a doubling of the number of local and global minima of the error function in the process of
retraining the neural network. Moreover, the hyperparameter B2, which describes the




48 S. Sveleba, I. Katerynchuk, I. Kuno et al.
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

contribution of the square of the error function gradient, is associated with a block structure
formation that prevents the doubling process and thus leads to the gradients' rarefaction.

As for the learning error, it is almost 3 times higher when the AMSGrad optimization
method is not used (Table 1, Table 2). In other words, the multilayered neural network shows
the best result when using the AMSGrad optimization method. While other optimization
methods (Adam, AdamMax) show better teaching results compared to teaching a multilayered
neural network without optimization methods, there is an uneven spread of the teaching error
for different numbers. In addition, for these optimization methods (Adam, AdamMax), a
satisfactory learning process is observed at 100 or more epochs, and at smaller epoch values
(<10) is almost absent.

Table 1. The learning error of a multilayered neural network (with three hidden layers with 28 neurons in
each layer) within 100 epochs, alpha = 0.001, when using stochastic optimization methods Adam,
AdamMax, or AMSGrad during the recognition of printed digits, which are given by an array of 4x7
zeros and ones, if p1 = 0.9, p2 = 0.999.

Adam method

AdamMax method

AMSGrad method

0 error = 0.002477
1 error =0.004718
2 error = NaN
3 error = NaN
4 error = NaN
5 error = 0.002492
6 error = 0.002069
7 error = NaN
8 error = 0.002493
9 error = 0.002439

0 error =0.001186
1 error = 0.002267
2 error = NaN

3 error =0.001677
4 error = NaN
5error =0.00011
6 error = 0.004569
7 error = 0.001867
8 error = 0.000294
9 error = 0.009408

0 error = 0.001258
1 error =0.00134

2 error = 0.001264
3 error =0.001288
4 error = 0.00137

5 error = 0.001293
6 error = 0.001298
7 error = 0.001317
8 error = 0.001244
9 error = 0.001294

Thus, applying Adam, AdamMax, and AMSGrad optimization methods to train a
multilayered neural network leads to better learning compared to a multilayered neural
network, even at the optimal learning rate (the learning rate at which the number of existing
local and global minima is doubled).

Table 2. The learning error of a multilayered neural network (with three hidden
layers with 28 neurons in each layer) within 100 epochs, and the optimal learning
rate during recognition of printed digits, which are given by an array of 4x7 zeros

and ones.

digit = 0; optimum alpha = 0.46; minimum error = 0.004829
digit = 1; optimum alpha = 0.45; minimum error = 0.004975
digit = 2; optimum alpha = 0.45; minimum error = 0.005025
digit = 3; optimum alpha = 0.45; minimum error = 0.005236
digit = 4; optimum alpha = 0.45; minimum error = 0.005088
digit = 5; optimum alpha = 0.45; minimum error = 0.00493

digit = 6; optimum alpha = 0.45; minimum error = 0.00496

digit = 7; optimum alpha = 0.46; minimum error = 0.00471

digit = 8; optimum alpha = 0.45; minimum error = 0.005261
digit = 9; optimum alpha = 0.46; minimum error = 0.004996
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Impact of iterations number on the learning process

Fig. 3 shows the dependence of the learning error on the number of iterations in different
modes of neural network learning (satisfactory learning mode - alpha = 0.0002, retraining -
alpha = 0.0007; 0.0008; the appearance of higher harmonics - alpha = 0.0012; chaotic state -
alpha = 0.0018). According to Figure 1, the learning process practically takes place in fifty
iterations. Increasing the learning rate causes a slight decrease in the number of iterations. At
the same time, with an increased learning rate, the process of increasing the non-monotonic
behavior of the error function can be traced (Fig. 3, c-d). Thus, at a learning rate that
corresponds to the neural network retraining mode, there is a non-monotonic learning process,
which, with an increase in the number of iterations, turns (according to Fig. 3) into a
monotonic and homogeneous learning process.
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Fig. 3. Dependence of the
learning error on the number of
iterations at different learning
rates (alpha), given p1=0.9,
$2=0.999, for the digit "0", when
using the AMSGrad optimization
K —— method.

d) alpha = 0.0017 e) alpha = 0.0018

¥ 00003

00000

Such a learning process can be associated with a decrease in the step size of the neural
network parameter correction. However, the question arises whether, under these conditions,
the process of retraining each neuron disappears and whether an increase in the number of
iterations contributes to this. Therefore, let us consider the mapping function, branching
diagram, and Fourier spectra for the error function. Fig.4 shows the mapping function,
branching diagram, and Fourier spectra of the error function as a function of the learning rate.
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Fig. 4. Branching diagrams by the number of iterations (a), Fourier spectra of the error function (b) and
the appearance of the mapping function (c), the error function for the digit "0" when using the AMSGrad
optimization method.

In other words, these dependencies were analyzed in different modes of neural network
learning. Under the condition of retraining, the mapping function shows the appearance of
additional oscillations, as indicated by the Fourier spectra of the error function (Fig. 4, b, and c,
at alpha = 0.0007). With a further increase in the learning rate (alpha = 0.0008, alpha =
0.0012), the instability of the newly formed oscillations is observed. The process of retraining
the neural network can be associated with the passage of a global minimum by individual
neurons. In other words, the appearance of local minima on the error function is caused by the
retraining of some individual neurons. Any further increase in the learning rate increases the
heterogeneity of the learning process without the appearance of additional local minima. The
increase in the heterogeneity of the learning process is caused by the neural network learning
method itself (the method of back-propagation of error). According to the mapping function
form, when the learning rate is increased to alpha = 0.0008, alpha = 0.0012, the retraining of
individual neurons becomes unstable as well. Although the power of the first harmonic signal
increases. It may indicate that with an increase in the learning rate, the number of neurons in
which the retraining process is observed also increases. Such an increase in the number of
neurons involved in retraining causes heterogeneous behavior of the error function on a single
neuron.

A further increase in the learning rate leads to a doubling of the local minimum number
on the error function (Fig. 4, a-c, alpha = 0.0017). According to the authors, such a doubling is
caused by an increase in the number of neurons for which the error function passes through a
global minimum. The Fourier spectra of the error function begin to show the second and third
harmonics (Fig. 4, b, alpha = 0.0017). The same process is visible on the branching diagram at
alpha = 0.0017. A further increase in the learning rate is accompanied by an increase in the
number of local minimum doublings. Under these conditions, according to the mapping
function, the neuronal learning process is heterogeneous. It can ultimately lead to a chaotic
learning process and hence to a chaotic state of the neural network.

However, the question arises as to the role of the AMSGrad optimization method in the
learning process.

The branching diagrams on the number of iterations shown in Fig. 4, and at alpha=0.0017
and alpha = 0.0018, show the occurrence of a heterogeneous state of the error function in a
certain range of changes in the iterations number. However, a further increase in iterations
leads to the disappearance of such a heterogeneous state of the error function. In this case, the
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neural network enters a stationary state. It is characterized by the process of retraining with the
existence of several local minima (Fig. 4, a, b at alpha = 0.0018).

Now let us consider the most evident features of the iteration number influence on the
learning process. After analyzing the neural network learning for different printed digits, we
noticed that learning for different digits occurs in almost the same scenario. Namely, at a
learning rate of alpha = 0.0018, with an increase in the number of iterations (10<N<400), the
neural network retrains with the formation of local minima. Such retraining leads to a chaotic
state of neural network learning (Fig. 5, a). A further increase in the number of iterations
(N>400) is accompanied by a decrease in the number of neurons involved in the retraining
process.
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In particular, it is indicated by the Fourier spectra obtained at N>500 (Fig. 5, c, d).

The AMSGrad algorithm is known to update the exponential moving averages of the
gradient (m;) and the square of the gradient (vi), where the hyperparameters p1 and B2 control
the exponential decay rates of these moving averages. Thus, with an increase in the number of
iterations due to a decrease in the value of the exponential weight correction, the number of
neurons involved in retraining decreases. Similar results were obtained when the average
gradient moving averages (m;) were updated according to the hyperbolic rule. That means
me=(1/(N+1))m—1+(1—(1/(N+1)))g; instead of m=p1N*Vm,_+(1-p1N*D)g..

An analysis of the effect of the hyperparameter p2 on the dependence of the learning error
on the number of iterations showed a similar tendency of the learning process. The only
difference was that the chaotic state of the neural network was observed at lower values of the
alpha parameter (alpha=0.0006, alpha=0.0018).

Thus, an increase in the number of neural network learning iterations when using the
AMSGrad optimization method is accompanied by a decrease in the number of neurons that
are inherent in the retraining process.

An increase in the number of hidden layers is known to lead to a better learning process
of a multilayered neural network. Thus, for a conventional multilayered neural network,
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according to [7], the best learning result was achieved when considering a three-layer neural
network. The AMSGrad optimization method plays an important role in teaching optimization
by the square of the gradient, which is determined by the hyperparameter p2. Therefore, an
increase in the number of hidden layers under these conditions, according to the authors,
should lead to an improvement in the learning process. Figure 6 shows the branching diagrams
obtained with different numbers of hidden layers. Provided that a certain number of neurons
are retrained (Fig. 6, a, alpha = 0.0017), the branching diagram for a three-layer neural
network shows the existence of a chaotic state. An increase in the number of hidden layers
leads to a decrease in the number of neurons involved in retraining (Fig. 6, b-e). Such a process
is accompanied by a decrease in the number of local minima. A further increase in the number
of hidden layers (N>8) leads to the absence of the learning process, with the appearance of a
chaotic state.

= 4000 000
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s Fig. 6. Branching diagrams as a

function of the number of

R iterations at different numbers of
hidden layers, a) - 3; b) - 4; c) -

5, d) - 6; e) - 7, under the
ie— o condition p1=0.9, p2=0.999,
Tl alpha=0.0017, for the digit "0",
e S EOE T when using the AMSGrad

d) hidden layers=6, e) hidden layers=7, optimization method.
iterations=5000, alpha=0.0017 iterations=5000, alpha=0.0017

Conclusion
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The use of the AMSGrad optimization method for multilayered neural networks results in
the appearance of a block structure of the error function during the learning process. The error
function is described by a significant number of existing periodicities. This behavior of the
error function is caused by the retraining of individual neurons. In other words, the increase in
the number of local minima of a multilayered neural network when approaching the global
minimum is caused by the process of retraining a certain number of neurons. Such retraining
causes the appearance of periodic behavior of the error function. Since the error function of the
neural network is a symbiosis of the error function of each neuron, its behavior will be
characterized by a spectrum of possible oscillation frequencies. Depending on such a parameter
as the learning rate alpha, the neural network error function will describe both the stationary
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and chaotic states of the neural network. The stable state of the neural network is described by
the retraining of a small number of neurons. Therefore, in this state, the error function is
periodic and is described by several oscillations. Under these conditions, the error function is
described by the existence of several local minima. As the number of local minima doubles, the
neural network enters a chaotic state. Under this condition, the error function of the neural
network is characterized by the spectrum of existing oscillations, and the average wave vector
over such an ensemble of oscillations can take on an incommensurate value. Thus, the resulting
chaotic state of the neural network is characterized by the retraining of the majority of neurons.

The optimization method AMSGrad, due to the correction of the contribution of the
square of the error function gradient, leads to a decrease in the number of neurons that are
retrained. It is especially evident when the number of iterations and the number of hidden
layers increase.

Thus, the AMSGrad optimization method in multilayered neural networks leads to the
emergence of a block structure, which indicates the heterogeneity of the neuronal learning
process in the hidden layers. As the contribution from the square of the gradient increases, the
neuronal learning process is equalized, which is accompanied by a decrease in the number of
retrained neurons.
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HABYAHHSA AMSGrad
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B po6oTi 3 momoMororw JoricTHYHOT (DYHKINi, IO OMUCYE MPOIEC MOJBOEHHS KiTBKOCTI
JIOKaTbHUX MiHIMyMiB, Ta ®yp’e crekTpiB (QYHKIUIT MOXUOKH A GaraTomapoBoi HelpoMepexi,
3a YMOBH 3aCTOCYBaHHA omnTHMi3amiiiHoro meromy AMSGrad 3milicHeHa aHami3 MOXHOKH
HaBYaHHs]. BCTaHOBIEHO, IO 3aCTOCYBaHHs ONTHMizaliiiHoro Meroga AMSGrad crnpuuuHse
MosiBy OJIOYHOT CTPYKTYpH (YHKIIT HOXHOKH B MPOIIECi HaBUaHHS 0araTomapoBoi HeHpoMepexi.
INokazano, mo ¢yHKUOiS NOXWUOKM HaBYaHHS OIUCYEThCS 3HAYHOIO KUIBKICTI ICHYIOYHX
MepiOANYHOCTEH, SKI BHHHKAIOTh BHACHIZOK IIEPEHABUYAHHSAM OKPEMO B3STHUX HEHpOHIB.
3017bIICHHS KUTBKOCTI JIOKAbHUX MiHIMYMIB 0aratoniapoBoi HeHpoMepeki MpU MiIXomdi 10
rJ100aNbHOTO MiHIMYyMY, 3yMOBJICHE IIPOIIECOM IIepEHaBYaHHSIM HEHPOHIB, SIKe CIPHYHHSIE MOSBY
MepioaudHOi TMOBEAiHKM (YHKUIT NOXuOKH. OCKUIPKM (QYHKIIS TOXHOKH HeHpoMepexi €
cum0bio3oM Bif (yHKIIi TOXHOKH KOKHOTO HEHpOHY, TO i moBediHKa Oyle XapakTepH3yBaTHCh
CIIEKTPOM MOXKJIMBHX NEPIOANYHOCTEH. B 3a]eXHOCTI Bill TakOro mapamerpa sk KpOK HaBYaHHS
alpha, ¢yskmis moxubku HaBYaHHS HeHpoMmepexi Oyme OMUCYyBaTH SIK CTALIOHAPHAM TakK 1
XaOTUYHHMM pEXHM HaB4YaHHA Helpomepexi. CTallioHapHMH peXUM HaBUaHHS HeilpoMmepexi
OINHUCYEThCS MEPEHABYaHHIM HE3HAYHOI KITBKOCTI HEHPOHIB, a QYHKIIisI HOXHOKH € TIepioIHYHOI0
(YHKIIIEIO 1 OMUCYETHCS KiJIbKOMA MEPiOJUIHCTAMHE. 3a UX YMOBI (DYHKIIisS HOXUOKH ONUCYETHCS
iCHYBaHHSM KiJIbKOX JIOKaJbHUX MiHiMyMiB. [Ipu 36inbienHi kpoky HaBuaHHs alpha, BHaciimok
MMOJIBOEHHS KUTBKOCTI JIOKAIFHUX MIHIMyMiB HeEHpoMepeka MepexXOIUTh B XaOTHYHHH DPEXUM
HaBuaHHA. [loka3aHO, WO [AHOMY pEXHMi HaBYaHHS QYHKIIS TOXHOKH HeWpoMmepexi
XapaKTePU3YEThCS CIIEKTPOM ICHYIOUHMX IEPiOJNYHOCTEH, a CepelHid XBHIHOBHH BEKTOP IIO
TaKOMY aHCaMOITI0 MOXKE TIPUHMATH HECIIBMipHE 3HAUEHHS.

BcraHoBIIeHO, MO KOHTPOJIE €KCIIOHEHIIadbHOI MIBHIKOCTI CIAAy CEpeqHiX TPajieHTIB i
KBaJpary rpajieHTa MinboBoi (yHKIii MoXxubku B ontuMisaniiHomy Meroni AMSGrad
MIPUBOAUTD 10 3MEHIICHHS KUTBKOCTI HEWPOHIB 10 epeHaBYaIOThCsl. TOOTO KOPEKIli€ MIBUIKOCTI
HaBYaHHS KOXKHOTO HEHpOHa, 3HIMae BUPOJDKEHICTh HaHOI CHCTEMM HUIIXOM 3aro0iraHHs
mpolecamM IepeHaBYaHHs HeWpoHiB. OCOOJIMBO SICKpaBO L€ MPOSBISETHCS NP 30UIbLICHHI
KUTBKOCTI iTepamiii i KiNBKOCTI NMpHUXOBaHHWX IMIapiB. [lokasaHo, IO ONTHUMI3AIifHUA METO.
AMSGrad B OararomapoBux HeHpomepekax, 3a YMOBH HEOIHOPITHOCTI BXiJHOTO MAacHUBY,
COpUYMHAE TOSIBY ONOYHOI CTpykTypu (yHKOii MOXHMOKM HaBYaHHS, SKa 3acBiqdye Ipo
HEOMHOPITHICTE TPOIECy HaBYaHHA HEHPOHIB B IPUXOBAaHMX IMIapax. 3ONBIICHHS BKIALY
KBaJgpaTa TpajieHTa MPOXOAWTH JO BHUPIBHIOBAHHS IPOIECY HAaBUaHHS HEHPOHiB, IO
CYIPOBOJDKYEThCS 3MEHILICHHSAM KiIbKOCTI HEHPOHIB SKi EPEHABUAIOTHCS.

Knrouosi crosa: GararomapoBa HelipoHHa Mmepexa, metoq AMSGrad, nokanbHi MiHIMyMH,
OJI04Ha CTPYKTypa
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