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The paper presents the exploration of artificial bee colony optimization algorithm for multi-
dimension functions which is implemented in Python 3. Due to increase of the searching
complexity, the high dimensional applied problems require development of the concurrent
computing approaches which involve either parallel or asynchronous programming. The latter
causes growth of general runtime and becomes bottleneck of single-processing implementation.
In order to deal with the raised issue, we propose the parallelization algorithms based on
multiprocessing library. The developed parallel approaches have shown the significant increase of
the performance and allow taking into account multi-dimensional character of optimization
problems. Despite the limitation of Python 3 multi-threading capabilities and the computational
cost of creating execution processes, the proposed and explored approaches have demonstrated
their efficiency for a number of benchmark functions.
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Introduction. Evolutionary computations, swarm intelligence and other meta-heuristics
have earned recognition as simple and at the same time effective family of algorithms for
solving complex and combinatorial problems [1]. The most of them are based on a biological
evolution principle, where each generation (candidate solution) is developing during the outer
conditions and interaction with each other. Different kinds of reproduction, mutation,
recombination, and selection define the processes of their computational behavior [2].

Among the vast group of evolutionary methods, nature-inspired meta-heuristics are of
considerable interest, in particular, because of solid performance in many of engineering
problems [3]. In general, the core principle of such approaches is the reproduction of
behavioral patterns of collective living beings aimed at solving everyday problems. For
instance, artificial bee colony (ABC) [4] mimics the process of seeking good food sources
which is applied to diverse optimization routines; artificial ant colony (AAC) that simulates
pheromone communication [5] is usually used in routing tasks; gray wolf optimization which is
based on complex social hierarchy (GWO) [6] can be applied to feature selection in machine
learning pipelines.

The major advantages of the mentioned techniques are good scalability to the higher
dimensional problems, ease of parallelism, robustness to noise and flexibility of customization
[7]. Despite the important drawback, which consists in significant computational costs, namely
in a large number of calculations of the fitness function, swarm meta-heuristics can be a
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suitable choice, if the possibility of parallelization of calculations is available. For example, in
[8] parallel ABC algorithm which utilizes MPI programming environment has been proposed
and studied; in [9] authors provide brief overview of GPU-based meta-heuristics; in [10] the
implementation of high-level parallel AAC is described and explored; in [11] a comprehensive
survey on parallel particle swarm optimization (PSO) algorithms is presented along with their
parallelization strategies and applications.

In this article, an attempt is made to analyze the results of the implementation of ABC
algorithm, both in single process mode and in their multi-process version. Typically, the
application of ABC algorithm for real-world problems require a huge number of the
computational agents, hence the parallelization techniques are preferable to speedup general
performance. There are a bunch of studies dedicated to parallelization of ABC: in [12] author
propose the parallel ABC based on colony division and mutation mechanics during the
employed bee phase; in [13] asynchronous ABC was examined; in [14] the traditional emigrant
selection strategy was replaced with a novel cooperative model, which was then examined
using the widely adopted ring neighborhood topology. Interesting modification was proposed
in [15] where author suggest using swapping mechanism to improve migration and solution
sharing between sub-colonies.

The motivation of this study is determined by the prospect of parallel application of this
algorithm in the tasks of neural network fine-tuning and its deployment within the framework
of a multi-agent system. Multi-process implementation is based on Python programming
language and multiprocessing library [16]; this choice is justified by the prevalence of the
Python stack in machine learning and allows the integration of the ABC algorithm into existing
deep learning frameworks. To investigate the implementations, we considered the
minimization problems of seven benchmark functions with variable dimensions.

Sequential ABC algorithm. The first appearance of the algorithm dates back to 2005,
when D. Karaboga proposed the use of honey bee swarm concept for solving optimization
problems [17]. Since that time, numerous variants and modifications of ABC have been widely
studied. The reason of this is the decent effectiveness in solving many applied and engineering
problems. Like many other swarm approaches, in the ABC agents (bees) are trying to find the
best solution in predefined region being communicating, sharing information and performing
specific roles.

Let’s consider the typical unconstrained minimization problem:

X =argmin f (x), xeRP, (1)

where X is the D-dimensional vector, f is the objective function and x" is the global mini-
mum.

The ABC algorithm aims to solve this problem by performing several simple steps, which
are determined by three search phases: employed bees, onlooker bees and scout bees. Before
these phases start, it is necessary to set up the initial state of the routine. Firstly, SN vectors
(candidate solutions) are generated as follows

X.j =X, + rand(O,l)(x‘jJb - x'jb) , )
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where i e [1, SN] , SN is the parameter of ABC which specifies the number of searching bees,

Ib

X j

is the j-th component of the vector x;, x; and xﬁ'b are the lower and upper bounds of

i
each component, rand(0,1) returns the random value in range [0, 1]. Number of bees is
usually set equal to candidate solutions.

After the initialization is done, employed bees phase starts. During this step each
employed bee generates the i-th solution using the next formulae:

Vi) :Xi,j+¢(xi,j_xk,j)v ©)

where ¢ is the random value from uniformly distributed range in [-1, 1], X, ; is the neighbor
of X ; . For each vector v, fitness function is calculated as:

fit(vi):[1+|f (vi)|: f(vi)=00r I/(1+f(v;)): f (vi)<0] . (4)

Depends on its value, i.e., if fit(v;)> fit(x;), then a new candidate solution v; replaces

previous x; . If the candidate solution has not been improved, it remains the same.

The onlooker bees phase helps to investigate the new solutions in the neighborhood of
each x; after the employed phase has been performed. It starts with the probabilities calcula-

tion via
SN
p(x)=fit(x)/ > fit(x,). (5)
n=1

As soon as probabilities have been obtained, each bee i, ie [1, SN] works on improving

the solution in the neighborhood based on the condition rand (0,1) < p(x;). If it is satisfied,

then bee uses (3) and (4) to update the solution. If not, then the next i+1 bee makes the same
step until all bees meet the condition rand(O,l) < p(xi ) The purpose of this step is to enhance

exploration process.
The last phase is scout bees. At the beginning, a trial counter is assigned to each solution
X; . It signifies how many times that solution was not improved via employed bees and

onlooker bees phase. Each scout bee checks corresponding trial counter and re-initialize
solution via (2), if the trials reach predefined limit. It is recommended to set the limit value as
D*SN or D*SN//2.

To sum up, one iteration of the sequential ABC algorithm works as follows:

» solutions and bees initialization;

» employed bee phase;

» calculating the probabilities via (5);

» onlooker bees phase;

» scout bees phase.

The proposed Python 3 sequential implementation consists of two separate modules. The
first one (fig. 1, 2) holds Agent class which represents the bee object and
UnconstrainedSwarm class with the implementation of the algorithm. The second one
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consists of the main ABC phases implemented as the separate functions (fig. 3). Each of them
implements the respective behavior as well as assures modularity and code flexibility.

Agent UnconstrainedSwarm
+dim: int + dim: int
+ idx: int + f: Callable
+ velocity: float + n_agents: int

+ position: numpy.array

+ cost: float + agents: List{Agent]

+|_bounds: list 15 max_trials:_ int
+ u_bounds: list +1_bounds: list
+trials: int + U_bounds: list
+ feasible: bool

+global_best: bool

+ create_swarm(): Mone

+ initialize(initializer: Callable): None +get_best(): Agent
+ set_cost(f: Callable): None + run(iterations: int): Agent
Fig. 1. UML diagram of Agent class Fig. 2. UML diagram of UnconstrainedSwarm
class

To increase the performance, all array data were implemented using Numpy package,
which allows vectorizing computations.

g s_abc.py
+ initializer (agent: Agent) // initialize the solution

+ check_bounds (agent: Agent, |_bound: list, u_bound: list) // check bounds for new solution

+ generate_candidate_solution (dim: int, x: np.array, neighbor: np.array) // generates new solution

+ general_selection (prev_cost: float, candidate_cost: float) // selects solution based on costs

+ calc_fitness (x: float) // calculates fitness

+ improve_solution (sol_index: int, agents: List{Agent], f: Callable, generator: Callable, selector:
Callable) // main function to improve/generate new solution, generator
is generate_candidate_solution(), selector: general_selection() function

+ perform_employed_phase (agents: ListfAgent], f: Callable, generator: Callable, selector:
Callable

+ perform_onlooker_phase (agents: List{Agent], f: Callable, generator: Callable, selector: Callable
) ! onlooker bees phase routine

+ perform_scout_phase (agents: List{Agent], f: Callable, initializer: Callable) /f scout bees phase

Fig. 3. UML module diagram for main ABC implementation

Parallel ABC algorithm. Regardless of numerous tasks, where the application of a
sequential single-process/thread ABC algorithm demonstrates high efficiency, complex and
multidimensional real-world problems require the parallelization of algorithm to speed up
calculations. For instance, the industry routing or mechanical engineering tasks require a huge
amount of computations which are time consuming and inefficient in the case of one
core/thread implementation. With this in mind, it is necessary to develop, to research and to
improve parallel ABC algorithms to speed up performance.

Since the development of concurrent algorithms quite often requires deep modification of
their sequential counterparts, such a task can be outlined by the following statements:
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* parallel or asynchronous implementation performance should not be worse than
sequential;

« with the increase of complexity, parallel implementations should gain more and more
effectiveness compared to the sequential approaches.

The most common idea for the parallelization of the ABC algorithm is to divide the
colony of bees into a set of sub-colonies that correspond to a separate process or thread [19].
Hence, each colony works on improving the solution separately from others. After the parallel
(or in some cases asynchronous) work has been completed, sub-colonies communicate with
each other and exchange information about their local solutions [20]. Actually, the details of
the last stage are the most complex and important when designing this kind of algorithms.

To set up the starting point of the study, in this work we consider a type of parallel ABC
implementation, namely where force max or fmABC technique. Since the standard Python 3
(CPython implementation) is, generally speaking, limited in the sense of multithreading due to
GIL blocking, we used the multi-processing module for the development [21].

We propose the simple parallel fmABC algorithm (fig. 4) which works as follows:

1) the whole array of solution SN is equally divided into sub-solutions (sub-colonies)
and is assigned to separate process which holds isolated UnconstrainedSwarm and
corresponding Agent objects;

2) inside each allocated process, sequential ABC performs default steps and produces
recurring local results X =x;, 1=1..SN/n_ proc, where n_ proc is number of

machine processors, best solution xBest and fitness fitBest values;
3) after all processes complete their  job, the best solution
xBest” =arg max ( fitBest | xBest) among all processes is determined;

4) the best solutions in each of i-th UnconstrainedSwarm is replaced by xBest”.

Calculations are performed for a predetermined number of iterations, or until the
condition regarding the accuracy of calculated solution is met. During the operations, the best
solution is forced among all sub-colonies, which causes selection pressure on them. This makes
sub-colony to reinforce a better solution. The disadvantages of this approach are spread of the
same solution vector across all sub-colonies and the reduction of their diversity. However, as
the numerical experiments in the next section will show, this technique demonstrates good
efficiency in comparison with the sequential algorithm.

The core action part inside both implementations is sequential ABC which can be either
modified to improve the performance. There are a lot of modifications which increase
execution time and convergence to global optima; nevertheless it is hard to find one optimal
version for all problems. Therefore, in this paper we consider the canonical version of the
algorithm.

Each sub-colony that performs the standard steps of the ABC algorithm is a separate
object of the Swarm class (method run()), which is inherited from the multiprocessing.
Process class and UnconstrainedSwarm. As soon as all processes complete their internal
operations, the local Swarm objects are extracted from the corresponding processes through
the Queue object, which allows processes to communicate with each other.

Python parallelization through the multiprocessing library have the drawbacks, which
consist of the "costliness" of creating individual processes and a slowing factor such as the use
of a queue object. In contrast to full-fledged multithreading, as in the C or C++ language,
where threads have free access to a common object in memory, multiprocessing requires the
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creation of a communication mechanism between independent processes, which slows down

the work and introduces additional computational complexity.

Algorithm 1 fmABC

Input: max_cycles, n_proc, f, SN
for i = 1..n_proc do

Init. Swarms = [Swarm;(f, SN/n_proc)| for each
sub-swarm

end for

for j = 1..max_cycles do
for k = 1..n_proc do
Swarms|k] « ABC(Swarms[k])
end for
best_solution = argmax(Swarm.best_fitness)
best_idx = Swarms.best_sol_idx

for k

1..n_proc do

if best_idx! = k then
Swarmslk].best_sol = best_sol
end if
end for

end for

Fig. 4. Parallel ABC algorithm

Experiments and results. To carry out numerical experiments and to compare single
process and multi-process implementation of the ABC algorithm we have considered seven
benchmark functions [22], defined in Table 1.

Table 1. Benchmark functions

f Range Formulae

Sphere [-100; 100] | f(z) =T a2

Step [-100; 100] | f(z) =52 (2 4+0.5)2

Rastrigin | [-5.12:5.12] | f(z) = 2%, (22 — 10 cos(2ma;) +10)

Schwefel | [-500; 5001 | f(z) = —XL,(msin(y/]e])) +
418.9820d

Griewank | [-10; 10] flz) = 1 + Z=2d e —
ITi, cos( %)

Rosenbrock| [-10; 10] ) = $971A00(z, 0 — 2)2) +
(wi — 1)2)

Ackley [-32; 32] f(z) = ~20exp(~0.2,/1 T, 22)—
cxp(é Zle cos(2mz;)) +20+ e

The first two are relatively simple unimodal functions with one global minimum.
Rastrigin function is non-convex function with a large number of local minima and global
minima in X, =0, i =1..D. The hyper-surface of the Schwefel function has a rather complex

shape with many local minimum and a global minimum at point x, =420.9687, i=1..D,

which unlike the previous ones, is shifted relative to the origin. Griewank function has a lot of
widespread regularly distributed local minimums. In our opinion, as demonstrated by the
following results, the Rosenbrock function is the most complex among the given seven
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functions because it has a rather narrow valley of complex curvature around the global
minimum. The hyper-surface of the Ackley function is quite complex with one global
minimum x =0, i=1.D. Almost all their minimization procedures are not trivial for

classical gradient based algorithm.

Sequential ABC results. We have conducted a bunch of numerical experiments with the
sequential ABC algorithm based on the following parameters:

» 50D functions: SN=60, max_cycles=2000, accuracy_eps = le-2, trials=d * SN//2
» 100D functions: SN=60, max_cycles=10000, accuracy _eps = 1e-2, trials=d * SN//2
» 200D functions: SN=60, max_cycles=14000, accuracy _eps = le-2, trials=d * SN//2.

For each function and for each dimension we made ten experiments. The aforementioned
hyper-parameters of the ABC algorithm were selected based on the analysis of relevant
publications. All experiments conducted on 12 cores 12th Gen Intel(R) Core(TM) i5-1235U
with 24 GB DDR4 RAM.

The results of experiments are depicted in Table 2-4. Here we point the best and worst
computation times over ten runs of the program, as well as the smallest and largest number of
iterations spent on the search.

Table 2. 50D functions ABC results

f Iterations Time (sec.)
Best Worst Best Worst
Sphere 602 710 1.5 1.8
Step 603 710 15 2.1
Rastrigin 1380 2123 4.2 6.5
Schwefel 1907 2880 5.0 7.5
Griewank 355 472 1.3 1.7
Rosenbrock 1856 4893 10.3 17
Ackley 875 1037 3.6 4.2
Table 3. 100D functions ABC results
f Iterations Time (sec.)
Best Worst Best Worst
Sphere 846 1015 2.4 3.0
Step 884 1002 2.6 2.9
Rastrigin 3076 4441 9.4 14
Schwefel 5201 7481 15.6 19.5
Griewank 718 978 2.8 3.9
Rosenbrock 5916 8145 22 30
Ackley 1937 2239 9.0 10.1

The application of the ABC algorithm to the minimization of 50-dimensional functions
demonstrates a decent solution efficiency and relatively small execution time. Rosenbrock and
Schwefel functions which are the most complicated in this list predictably require more time
and iterations to be minimized.
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Table 4. 200D functions ABC results

f Iterations Time (sec.)

Best Worst Best Worst
Sphere 1894 2075 5.7 6.3
Step 1867 2237 5.8 6.3
Rastrigin 7253 9260 25 31
Schwefel 12649 13974 35 39
Griewank 1706 1818 8.0 8.5
Rosenbrock 10063 10063 84 84
Ackley 4099 4487 22 26

Compared with 100-dimensional minimization, for 200-dimensional functions the ABC
algorithm is performed slower due to increase of solution space. Also, the most challenging
Rosenbrock functions was optimized only once in ten times. The approximate slowness rate
which is estimated as ratio between averaged the most quick and the most slow optimization
times lies in range from 2.4 to 3 times against 100d functions depending on function’s search
complexity. Also, the number of iterations increases at least in 2 times. It indicates a need for
the development of methods to accelerate the execution of calculations.

The high-dimensional 200d problems require a significant increase in calculation time
compared to 50d or 100d problems, especially for the most complex functions. The complexity
ratio r = MostSimpleFunc_execution_time/Rosenbrock_execution_time for each dimension
equals r,, =0.14, r,, =0.1, ., =0.07 and decreases approximately by 0.3-0.4 with the

increase of problem dimension. This ratio may vary depending on the parameters of the
algorithm, namely the number of bees and the trial parameter. An important problem in such
calculations is the correct selection of hyper-parameters, which can be carried out using a
meta-optimizer.

Parallel ABC results. The results of the single-process sequential implementation of the
ABC algorithm clearly indicate the need for parallelization of calculations. One possible
solution based on fig. 4 is outlined in this section.

To test fmABC algorithm we have chosen 200d problems and have set the following

parameters: n :{4,6}, SN =60/n_ proc, max_cycles=12000. Here the same

proc
number of SN which has been used in sequential algorithm for the given dimension is divided
among n_ proc processes. That is, the number of agents involved in the work in the single-

process version in this case is divided by executor processes that implement the work of the
sequential algorithm independently of each other. Each process executes 10 inner iterations of
ABC before the exchange with the best solution is done.

The results of experiments conducted for 4 and 6 cores are presented in Tables 5, 6. The
proposed scheme of parallelization (fig. 4) reduces either the number of iterations and total
execution time for both 4 and 6 cores spanning. Despite the computing load, which involves
the creation of processes by the operating system, the developed parallelization scheme shows
a significant increase in execution time.

sub_ colony
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Table 5. 200D functions parallel ABC results (4 cores)

f Iterations Time (sec.)

Best Worst Best Worst
Sphere 187 197 4.2 4.8
Step 181 194 4.4 4.7
Rastrigin 358 390 9.2 10.3
Schwefel 704 878 15.7 19.9
Griewank 113 183 3.7 5.9
Rosenbrock 972 11691 30 350
Ackley 310 322 10.3 11.1

The average execution time (4 cores) except Rosenbrock function in case of 200d
sequential runs equals 18.2 seconds. The parallel version for 200d problems requires in average
8.7 seconds and in fact is more than twice faster in comparison with the sequential
implementation. Rosenbrock function was correctly optimized during the each of ten
experiments, whereas the sequential approach was able to complete the task only once in a
row. Also, the best result for Rosenbrock optimization was obtained in lower number of
seconds during the parallel runs.

Table 6. 200D functions parallel ABC results (6 cores)

f Iterations Time (sec.)

Best Worst Best Worst
Sphere 193 209 3.1 3.4
Step 197 205 3.3 3.6
Rastrigin 304 371 5.9 7.2
Schwefel 561 1100 9.1 17.9
Griewank 109 208 25 4.8
Rosenbrock** 1184 11767 24.3 242
Ackley 301 320 7.4 8.1

The parallel routine distributed in 6 cores results in average (except Rosenbrock function)
6.4 seconds. This result is even faster than 4 cores parallelism, which is actually obvious in the
given circumstances. And although the number of iterations to achieve the result has not
changed critically, the amount of time spent on optimization has been decreased. Also, in this
particular case Rosenbrock function was successfully minimized only by 9/10 times**.
However, the execution time is also better than 4 cores implementation. It is interesting that the
reduction of the number of agents in 6 processes compared to 4 processes affects the search
capacity and, in the case of a rather complex Rosenbrock function, reduces the minimization
efficiency. This leads to the fact that it is necessary to study this aspect in the case of complex
hyper-surfaces.

The strength of the proposed parallel approach is that the exchange mechanism between
processes can be implemented in different ways, not only replacing the best solutions in each
process with the best of all, but also experimenting with various schemes of inter-process
migrations.
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Conclusions. Since the Python 3 programming language is a standard in the development
of both mathematical models and the implementation of machine learning algorithms, it is
relevant to study parallelization taking into account its limitations. Swarm algorithms such as
ABC being highly parallel in their nature can be actively used as the numerical optimization
methods implemented specifically in the Python 3 ecosystem. Hence this work is the additional
step forward developing the swarm-based Python 3 solutions.

Here we have studied a process of improving the standard ABC algorithm in a parallel
form. Based on Python 3 implementation we have conducted several experiments with the
sequential algorithm. Given seven benchmark 50, 100 and 200 dimensional functions of the
different complexity we applied ABC method to minimize each of them and identified
corresponding number of iterations and execution time to achieve the global minima. Because
standard ABC approach has a lot of spots to make it more efficient and to speed up
computations, we present a simple and effective parallelization scheme.

This scheme involves splitting the entire population of solutions into sub-groups across
processes and running each of them in parallel. To force the search capabilities, we propose
exchange mechanism: the best solution among all sub-groups (sub-swarms) replaces the best
solution in each sub-group after some predefined number of local (inside each process)
iterations. These iterations are just a standard sequential execution of employed, onlooker and
scout bees phases. The comparative study between sequential and parallel forms of ABC
revealed that proposed parallel scheme outperforms sequential in terms of execution time and
number of iterations. Also, such a scheme can serve as a basis for further research of parallel
swarm algorithms.

REFERENCES

[1] A comprehensive survey: artificial bee colony (ABC) algorithm and applications / Dervis
Karaboga [et al.] // Artificial Intelligence Review. — 2012, — T. 42, Ne 1. — C. 21-57. —
DOI: https://doi.org/10.1007/s10462-012-9328-0 .

[2] Hassanien A. E. Swarm Intelligence: Principles, Advances, and Applications / Aboul Ella
Hassanien, Eid Emary. Taylor & Francis Group, 2018. — 210 c.

[3] ChopraD. Swarm Intelligence in Data Science: Challenges, Opportunities and
Applications / Deepti Chopra, Praveen Arora // Procedia Computer Science. — 2022. —
Vol. 215. — P. 104-111. DOI: https://doi.org/10.1016/j.procs.2022.12.012 .

[4] Foundations of Fuzzy Logic and Soft Computing / ed. by P. Melin [et al.]. — Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007. DOI: https://doi.org/10.1007/978-3-540-
72950-1.

[5] Dorigo M. Ant colony optimization theory: A survey / Marco Dorigo, Christian Blum //
Theoretical Computer Science. — 2005. — Vol.344, no.2-3. — P.243-278.
DOI: https://doi.org/10.1016/j.tcs.2005.05.020 .

[6] Mirjalili S. Grey Wolf Optimizer / Seyedali Mirjalili, Seyed Mohammad Mirjalili,
Andrew Lewis // Advances in Engineering Software. — 2014. — Vol. 69. — P. 46-61.
DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007 .

[71 Boussaid l. A survey on optimization metaheuristics / Ilhem Boussaid, Julien Lepagnot,
Patrick Siarry // Information Sciences. — 2013. — Vol. 237. — P.82-117. — Mode of
access: https://doi.org/10.1016/j.ins.2013.02.041 .



https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1016/j.procs.2022.12.012
https://doi.org/10.1007/978-3-540-72950-1
https://doi.org/10.1007/978-3-540-72950-1
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.ins.2013.02.041

40 O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

[8] Hong Y. Research of Parallel Artificial Bee Colony Algorithm Based on MPI / Yingsen
Hong, Zhenzhou Ji, Chunlei Liu// 2nd International Conference on Computer Science
and Electronics Engineering (ICCSEE 2013), China, 22—-23 March 2013. — Paris, France,
2013. DOI: https://doi.org/10.2991/iccsee.2013.339 .

[9]1 A comparative study of GPU metaheuristics for data clustering / Mario Santos [et al.] //
2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Melbourne, Australia, 17-20 October 2021. - [S. L], 2021.
DOI: https://doi.org/10.1109/smc52423.2021.9658803 .

[10] High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons / Breno A. de
Melo Menezes [et al.]// International Journal of Parallel Programming. — 2021.
DOI: https://doi.org/10.1007/s10766-021-00714-1 .

[11] A Survey on Parallel Particle Swarm Optimization Algorithms / Soniya Lalwani [et al.] //
Arabian Journal for Science and Engineering. — 2019. — Vol. 44, no. 4. — P. 2899-2923.
DOI: https://doi.org/10.1007/s13369-018-03713-6 .

[12] Harikrishna Narasimhan. Parallel artificial bee colony (PABC) algorithm / Harikrishna
Narasimhan // 2009 World Congress on Nature & Biologically Inspired Computing
(NaBIC), Coimbatore, India, 9-11 December 2009. - [S.l], 2009.
DOI: https://doi.org/10.1109/nabic.2009.5393726 .

[13] Akay B. Synchronous and asynchronous Pareto-based multi-objective Artificial Bee
Colony algorithms / Bahriye Akay // Journal of Global Optimization. — 2012. — Vol. 57,
no. 2. — P. 415-445. — DOI: https://doi.org/10.1007/s10898-012-9993-1 .

[14] Karaboga D. A new emigrant creation strategy for parallel Artificial Bee Colony
algorithm / Dervis Karaboga, Selcuk Aslan // 2015 9th International Conference on
Electrical and Electronics Engineering (ELECO), Bursa, 26-28 November 2015. — [S. 1.],
2015. DOI: https://doi.org/10.1109/elec0.2015.7394477.

[15] Aslan S. A new emigrant utilization strategy for parallel artificial bee colony algorithm /
Selcuk Aslan // Evolving Systems. — 2019. DOI: https://doi.org/10.1007/s12530-019-
09294-5.

[16] Python Parallel Processing and Multiprocessing: A Rivew / Zina A. Aziz [et al.] //
Academic Journal of Nawroz University. — 2021. — Vol. 10, no. 3. — P. 345-354. DOI:
https://doi.org/10.25007/ajnu.v10n3al145.

[17] Karaboga D. An Idea Based in Honey Bee Swarm for Numerical Optimization / Dervis
Karaboga // Artificial Bee Colony (ABC) Algorithm Homepage. — Mode of
access: https://abc.erciyes.edu.tr/pub/tr06_2005.pdf .

[18] Slowik A. Nature Inspired Methods and Their Industry Applications—Swarm Intelligence
Algorithms / Adam Slowik, Halina Kwasnicka // IEEE Transactions on Industrial Infor-
matics. — 2018. — Vol. 14, no. 3. — P. 1004-1015.
DOI: https://doi.org/10.1109/1ii.2017.2786782 .

[19] Research and implementation of parallel artificial bee colony algorithm based on ternary
optical computer / Shuang Li [et al.] // Automatika. — 2019. — Vol. 60, no. 4. — P. 423-
432. DOI: https://doi.org/10.1080/00051144.2019.1639118 .

[20] Parpinelli R. S. Parallel Approaches for the Artificial Bee Colony Algorithm / Rafael
Stubs Parpinelli, César Manuel Vargas Benitez, Heitor Silvério Lopes // Adaptation,



https://doi.org/10.2991/iccsee.2013.339
https://doi.org/10.1109/smc52423.2021.9658803
https://doi.org/10.1007/s10766-021-00714-1
https://doi.org/10.1007/s13369-018-03713-6
https://doi.org/10.1109/nabic.2009.5393726
https://doi.org/10.1007/s10898-012-9993-1
https://doi.org/10.1109/eleco.2015.7394477
https://doi.org/10.25007/ajnu.v10n3a1145
https://abc.erciyes.edu.tr/pub/tr06_2005.pdf
https://doi.org/10.1109/tii.2017.2786782
https://doi.org/10.1080/00051144.2019.1639118

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky 41
ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

Learning, and Optimization. — Berlin, Heidelberg, 2011. - P.329-345.
DOI: https://doi.org/10.1007/978-3-642-17390-5_14.

[21] Arjona A. Transparent serverless execution of Python multiprocessing applications / Aitor
Arjona, Gerard Finol, Pedro Garcia Lépez // Future Generation Computer Systems. —
2022. DOI: https://doi.org/10.1016/j.future.2022.10.038 .

[22] Jamil M. A literature survey of benchmark functions for global optimisation problems /
Momin Jamil, Xin She Yang // International Journal of Mathematical Modelling and Nu-
merical Optimisation. - 2013. - Vol. 4, no. 2. - P. 150.
DOI: https://doi.org/10.1504/ijmmno.2013.055204 .

JOCJIJKEHHA TAPAJEJBHOI MOJEJI AJITOPUTMY HITYYHOT'O
BJ1XKOJHUHOI'O POIO

O. CinbkeBuu, B. Boiiko, JI. Monactupcbskuii, b. CokooBcbKkuii

Kagpeopa padioeieKmpoHHUX i KOMN TOMEPHUX CUCTIEM,
Jlveiecvkutl nayionanvuull yHieepcumem imeni leana Opanka,
eyn. [lpacomanosa, 50, 79005 Jlvsis, Yrpaina
oleh.sikevych@Inu.edu.ua

PoiioBi amroputmu, Taki sIK mry4dHuit 6mkomuuuid piii (ABC), Oyayun mapanenbHUMH 3a
CBOEIO NPUPOJIOI0, MOXKYTh BHKOPHCTOBYBATHCS SIK YHCEIbHI METOM ONTHMIi3allii, peai3oBaHi B
exocucteMmi Python 3. Ockinbku MoBa mporpamyanHs Python 3 € cranmapTom y po3poOui sk
MaTeMaTHYHUX MoJeNeil, Tak i peaniamii aJropuTMiB MaIIMHHOTO HABYAHHS], aKTYaIBHUM €
BUBUCHHS pO3MApalielIioBaHHs 3 ypaxyBaHHAM #Horo oOMexeHb. JlaHe HOCITIDKeHHS €
JOJaTKOBHM KPOKOM Y po3po01i pimens Python 3 Ha 0cHOBi pOHOBOTO 1HTENEKTY .

Y poboTi BUBYAETHCS MPOLIEC BIOCKOHAIECHHS cTaHIapTHOTO anroputMy ABC y nmapanenbHiit
¢opmi. Ha ocHoBi peamzamii Python 3 mpoBenmeHi 4mcenpHI €KCIEPUMEHTH 3 KIACHYHUM
MOCTTiTOBHUM aropuT™MOM. BpaxoByroun ciM etanoraux 50, 100 i 200-BumipHux QyHKIiN pizHOT
CKJIaJIHOCTI, 3acTocoBano mMeron ABC anst MiHiMi3amii KOXKHOT 3 HUX 1 BU3HAYCHO BIAMOBIIHY
KUTBKICTh iTepailiii Ta Yac BUKOHAHHSA ISl JOCATHEHHS TNOOAIbHUX MiHIMyMiB. OCKITBKH
crangapTauit minxin ABC mae 6Garato Micib, o0 3poOuTH iHoro Oulbil e(heKTHBHUM i
MIPUCKOPUTH  OOYMCIICHHS, MH TpPEACTAaBISIEMO TNPOCTy Ta e(QeKTHUBHY CXeMy Horo
posmapanentoBanHs. L{g cxema mepenbadae po3OHTTS Bciel mMOmyismil pillieHb Ha TIATPYNH 3a
MpoIecaMy Ta BUKOHAHHS KOXHOTO 3 HAX HapanensHo. 1106 mocrmmmT MOXKIMBOCTI HOIIYKY, MU
MIPOTIOHYEMO MEXaHi3M OOMiHy: HalKpaImuil po3B’SI30K cepel ycix MArpyn 3aMiHIOE HafKparie
pilIeHHS B KOKHIM MIArPYIi MicCiA MOMEPEeIHO BH3HAYEHOI KiTBKOCTI JIOKANBHUX (BCEpeIOHHi
KOJKHOTO Tpouecy) itepariid. Lli iTepawil € juiie cTaHAapTHUM IOCIIIOBHUM BHKOHaHHAM (a3
3alHATHX OJUKIN, OJUKIN-CrocTepiradiB i OUKII-po3BiqHUKIB. [IOpIBHSIIBHE MOCTIMIKECHHS MK
HOCIIIOBHUMH Ta mapaienbHuMu ¢opmamMu ABC mokasano, mo 3amporoHOBaHa mapalieibHa
cXeMa IMepeBeplIye MOCHiOBHY 3 TOYKH 30pYy 4Yacy BHKOHAHHS Ta KiJbKOCTI iTepauiif. Takox,
Taka cxeMa MOXXe OyTH OCHOBOIO [UIsi MOJAJBLIMX JOCHIIKCHb MapalellbHUX pPOHOBHX
aITOPHUTMIB.

Knrouosi cnosa: miTydHHd OIDKOJMHMHUE Piif; METaeBPUCTHKA; POHOBUIl iHTENEKT; YHCENbHA
ONTUMI3allis; 6araTonpoIecHICTb.
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