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The paper presents the exploration of artificial bee colony optimization algorithm for multi-

dimension functions which is implemented in Python 3. Due to increase of the searching 

complexity, the high dimensional applied problems require development of the concurrent 

computing approaches which involve either parallel or asynchronous programming. The latter 

causes growth of general runtime and becomes bottleneck of single-processing implementation. 

In order to deal with the raised issue, we propose the parallelization algorithms based on 

multiprocessing library. The developed parallel approaches have shown the significant increase of 

the performance and allow taking into account multi-dimensional character of optimization 

problems. Despite the limitation of Python 3 multi-threading capabilities and the computational 

cost of creating execution processes, the proposed and explored approaches have demonstrated 

their efficiency for a number of benchmark functions. 

Keywords: artificial bee colony; meta-heuristics; swarm intelligence; numerical optimization; 

multi-processing. 

 

Introduction. Evolutionary computations, swarm intelligence and other meta-heuristics 

have earned recognition as simple and at the same time effective family of algorithms for 

solving complex and combinatorial problems [1]. The most of them are based on a biological 

evolution principle, where each generation (candidate solution) is developing during the outer 

conditions and interaction with each other. Different kinds of reproduction, mutation, 

recombination, and selection define the processes of their computational behavior [2].  

Among the vast group of evolutionary methods, nature-inspired meta-heuristics are of 

considerable interest, in particular, because of solid performance in many of engineering 

problems [3]. In general, the core principle of such approaches is the reproduction of 

behavioral patterns of collective living beings aimed at solving everyday problems. For 

instance, artificial bee colony (ABC) [4] mimics the process of seeking good food sources 

which is applied to diverse optimization routines; artificial ant colony (AAC) that simulates 

pheromone communication [5] is usually used in routing tasks; gray wolf optimization which is 

based on complex social hierarchy (GWO) [6] can be applied to feature selection in machine 

learning pipelines. 

The major advantages of the mentioned techniques are good scalability to the higher 

dimensional problems, ease of parallelism, robustness to noise and flexibility of customization 

[7]. Despite the important drawback, which consists in significant computational costs, namely 

in a large number of calculations of the fitness function, swarm meta-heuristics can be a 
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suitable choice, if the possibility of parallelization of calculations is available. For example, in 

[8] parallel ABC algorithm which utilizes MPI programming environment has been proposed 

and studied; in [9] authors provide brief overview of GPU-based meta-heuristics; in [10] the 

implementation of high-level parallel AAC is described and explored; in [11] a comprehensive 

survey on parallel particle swarm optimization (PSO) algorithms is presented along with their 

parallelization strategies and applications.  

In this article, an attempt is made to analyze the results of the implementation of ABC 

algorithm, both in single process mode and in their multi-process version. Typically, the 

application of ABC algorithm for real-world problems require a huge number of the 

computational agents, hence the parallelization techniques are preferable to speedup general 

performance. There are a bunch of studies dedicated to parallelization of ABC: in [12] author 

propose the parallel ABC based on colony division and mutation mechanics during the 

employed bee phase; in [13] asynchronous ABC was examined; in [14] the traditional emigrant 

selection strategy was replaced with a novel cooperative model, which was then examined 

using the widely adopted ring neighborhood topology. Interesting modification was proposed 

in [15] where author suggest using swapping mechanism to improve migration and solution 

sharing between sub-colonies. 

The motivation of this study is determined by the prospect of parallel application of this 

algorithm in the tasks of neural network fine-tuning and its deployment within the framework 

of a multi-agent system. Multi-process implementation is based on Python programming 

language and multiprocessing library [16]; this choice is justified by the prevalence of the 

Python stack in machine learning and allows the integration of the ABC algorithm into existing 

deep learning frameworks. To investigate the implementations, we considered the 

minimization problems of seven benchmark functions with variable dimensions. 

Sequential ABC algorithm. The first appearance of the algorithm dates back to 2005, 

when D. Karaboga proposed the use of honey bee swarm concept for solving optimization 

problems [17]. Since that time, numerous variants and modifications of ABC have been widely 

studied. The reason of this is the decent effectiveness in solving many applied and engineering 

problems. Like many other swarm approaches, in the ABC agents (bees) are trying to find the 

best solution in predefined region being communicating, sharing information and performing 

specific roles.  

Let’s consider the typical unconstrained minimization problem: 

( )* argmin , Df= x x x R , (1) 

where x  is the D-dimensional vector, f is the objective function and *
x  is the global mini-

mum. 

The ABC algorithm aims to solve this problem by performing several simple steps, which 

are determined by three search phases: employed bees, onlooker bees and scout bees. Before 

these phases start, it is necessary to set up the initial state of the routine. Firstly, SN  vectors 

(candidate solutions) are generated as follows 

( )( ), rand 0,1lb ub lb
i j j j jx x x x= + − , (2) 
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where  1,i SN , SN  is the parameter of ABC which specifies the number of searching bees, 

,i jx  is the j-th component of the vector ix , 
lb
jx  and 

ub
jx  are the lower and upper bounds of 

each component, ( )rand 0,1  returns the random value in range [0, 1]. Number of bees is 

usually set equal to candidate solutions. 

After the initialization is done, employed bees phase starts. During this step each 

employed bee generates the i-th solution using the next formulae: 

( ), , , ,i j i j i j k jv x x x= + − , (3) 

where   is the random value from uniformly distributed range in [-1, 1], ,k jx  is the neighbor 

of ,i jx . For each vector v , fitness function is calculated as: 

( ) ( ) ( ) ( )( ) ( )1 : 0 1 1 : 0i i i i ifit f f or f f = +  +  v v v v v . (4) 

Depends on its value, i.e., if ( ) ( )i ifit fitv x , then a new candidate solution iv  replaces 

previous ix . If the candidate solution has not been improved, it remains the same. 

The onlooker bees phase helps to investigate the new solutions in the neighborhood of 

each ix  after the employed phase has been performed. It starts with the probabilities calcula-

tion via  

( ) ( ) ( )
1

SN

i i n
n

p fit fit
=

= x x x . (5) 

As soon as probabilities have been obtained, each bee i ,  1,i SN  works on improving 

the solution in the neighborhood based on the condition ( ) ( )0,1 irand p x . If it is satisfied, 

then bee uses (3) and (4) to update the solution. If not, then the next 1i +  bee makes the same 

step until all bees meet the condition ( ) ( )rand 0,1 ip x . The purpose of this step is to enhance 

exploration process. 

The last phase is scout bees. At the beginning, a trial counter is assigned to each solution 

ix . It signifies how many times that solution was not improved via employed bees and 

onlooker bees phase. Each scout bee checks corresponding trial counter and re-initialize 

solution via (2), if the trials reach predefined limit. It is recommended to set the limit value as 

*D SN  or * / /2D SN . 

To sum up, one iteration of the sequential ABC algorithm works as follows: 

➢ solutions and bees initialization; 

➢ employed bee phase; 

➢ calculating the probabilities via (5); 

➢ onlooker bees phase; 

➢ scout bees phase. 

The proposed Python 3 sequential implementation consists of two separate modules. The 

first one (fig. 1, 2) holds Agent class which represents the bee object and 

UnconstrainedSwarm class with the implementation of the algorithm. The second one 
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consists of the main ABC phases implemented as the separate functions (fig. 3). Each of them 

implements the respective behavior as well as assures modularity and code flexibility. 

 

  

Fig. 1. UML diagram of Agent class Fig. 2. UML diagram of UnconstrainedSwarm 

class 
 

To increase the performance, all array data were implemented using Numpy package, 

which allows vectorizing computations. 

 

 

Fig. 3. UML module diagram for main ABC implementation 
 

Parallel ABC algorithm. Regardless of numerous tasks, where the application of a 

sequential single-process/thread ABC algorithm demonstrates high efficiency, complex and 

multidimensional real-world problems require the parallelization of algorithm to speed up 

calculations. For instance, the industry routing or mechanical engineering tasks require a huge 

amount of computations which are time consuming and inefficient in the case of one 

core/thread implementation. With this in mind, it is necessary to develop, to research and to 

improve parallel ABC algorithms to speed up performance. 

Since the development of concurrent algorithms quite often requires deep modification of 

their sequential counterparts, such a task can be outlined by the following statements:  
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• parallel or asynchronous implementation performance should not be worse than 

sequential;  

• with the increase of complexity, parallel implementations should gain more and more 

effectiveness compared to the sequential approaches.  

The most common idea for the parallelization of the ABC algorithm is to divide the 

colony of bees into a set of sub-colonies that correspond to a separate process or thread [19]. 

Hence, each colony works on improving the solution separately from others. After the parallel 

(or in some cases asynchronous) work has been completed, sub-colonies communicate with 

each other and exchange information about their local solutions [20]. Actually, the details of 

the last stage are the most complex and important when designing this kind of algorithms. 

To set up the starting point of the study, in this work we consider a type of parallel ABC 

implementation, namely where force max or fmABC technique. Since the standard Python 3 

(CPython implementation) is, generally speaking, limited in the sense of multithreading due to 

GIL blocking, we used the multi-processing module for the development [21]. 

We propose the simple parallel fmABC algorithm (fig. 4) which works as follows: 

1) the whole array of solution SN  is equally divided into sub-solutions (sub-colonies) 

and is assigned to separate process which holds isolated UnconstrainedSwarm and 

corresponding Agent objects;  

2) inside each allocated process, sequential ABC performs default steps and produces 

recurring local results i=X x , 1 1.. _SN n proc= , where _n proc  is number of 

machine processors, best solution xBest  and fitness fitBest  values;  

3) after all processes complete their job, the best solution 

( )* argmax |=xBest fitBest xBest  among all processes is determined;  

4) the best solutions in each of i-th UnconstrainedSwarm is replaced by *
xBest . 

Calculations are performed for a predetermined number of iterations, or until the 

condition regarding the accuracy of calculated solution is met. During the operations, the best 

solution is forced among all sub-colonies, which causes selection pressure on them. This makes 

sub-colony to reinforce a better solution. The disadvantages of this approach are spread of the 

same solution vector across all sub-colonies and the reduction of their diversity. However, as 

the numerical experiments in the next section will show, this technique demonstrates good 

efficiency in comparison with the sequential algorithm. 

The core action part inside both implementations is sequential ABC which can be either 

modified to improve the performance. There are a lot of modifications which increase 

execution time and convergence to global optima; nevertheless it is hard to find one optimal 

version for all problems. Therefore, in this paper we consider the canonical version of the 

algorithm. 

Each sub-colony that performs the standard steps of the ABC algorithm is a separate 

object of the Swarm class (method run()), which is inherited from the multiprocessing. 

Process class and UnconstrainedSwarm. As soon as all processes complete their internal 

operations, the local Swarm objects are extracted from the corresponding processes through 

the Queue object, which allows processes to communicate with each other. 

Python parallelization through the multiprocessing library have the drawbacks, which 

consist of the "costliness" of creating individual processes and a slowing factor such as the use 

of a queue object. In contrast to full-fledged multithreading, as in the C or C++ language, 

where threads have free access to a common object in memory, multiprocessing requires the 



O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky 

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25 

35 

creation of a communication mechanism between independent processes, which slows down 

the work and introduces additional computational complexity. 

 

 

Fig. 4. Parallel ABC algorithm 

 

Experiments and results. To carry out numerical experiments and to compare single 

process and multi-process implementation of the ABC algorithm we have considered seven 

benchmark functions [22], defined in Table 1. 

 
Table 1. Benchmark functions 

 
 

The first two are relatively simple unimodal functions with one global minimum. 

Rastrigin function is non-convex function with a large number of local minima and global 

minima in 0ix = , 1..i D= . The hyper-surface of the Schwefel function has a rather complex 

shape with many local minimum and a global minimum at point 420.9687ix = , 1..i D= , 

which unlike the previous ones, is shifted relative to the origin. Griewank function has a lot of 

widespread regularly distributed local minimums. In our opinion, as demonstrated by the 

following results, the Rosenbrock function is the most complex among the given seven 
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functions because it has a rather narrow valley of complex curvature around the global 

minimum. The hyper-surface of the Ackley function is quite complex with one global 

minimum 0ix = , 1..i D= . Almost all their minimization procedures are not trivial for 

classical gradient based algorithm. 

Sequential ABC results. We have conducted a bunch of numerical experiments with the 

sequential ABC algorithm based on the following parameters: 

 

➢ 50D functions: SN=60, max_cycles=2000, accuracy_eps = 1e-2, trials=d ∗ SN//2  

➢ 100D functions: SN=60, max_cycles=10000, accuracy_eps = 1e-2, trials=d ∗ SN//2 

➢ 200D functions: SN=60, max_cycles=14000, accuracy_eps = 1e-2, trials=d ∗ SN//2. 

 

For each function and for each dimension we made ten experiments. The aforementioned 

hyper-parameters of the ABC algorithm were selected based on the analysis of relevant 

publications. All experiments conducted on 12 cores 12th Gen Intel(R) Core(TM) i5-1235U 

with 24 GB DDR4 RAM.  

The results of experiments are depicted in Table 2-4. Here we point the best and worst 

computation times over ten runs of the program, as well as the smallest and largest number of 

iterations spent on the search. 

 
Table 2. 50D functions ABC results 

f Iterations Time (sec.) 
Best Worst Best Worst 

Sphere 602 710 1.5 1.8 

Step 603 710 1.5 2.1 

Rastrigin 1380 2123 4.2 6.5 

Schwefel 1907 2880 5.0 7.5 

Griewank 355 472 1.3 1.7 

Rosenbrock 1856 4893 10.3 17 

Ackley 875 1037 3.6 4.2 

 

 
Table 3. 100D functions ABC results 

f Iterations Time (sec.) 

Best Worst Best Worst 

Sphere 846 1015 2.4 3.0 

Step 884 1002 2.6 2.9 

Rastrigin 3076 4441 9.4 14 

Schwefel 5201 7481 15.6 19.5 

Griewank 718 978 2.8 3.9 

Rosenbrock 5916 8145 22 30 

Ackley 1937 2239 9.0 10.1 

 

The application of the ABC algorithm to the minimization of 50-dimensional functions 

demonstrates a decent solution efficiency and relatively small execution time. Rosenbrock and 

Schwefel functions which are the most complicated in this list predictably require more time 

and iterations to be minimized. 
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Table 4. 200D functions ABC results 

f Iterations Time (sec.) 

Best Worst Best Worst 

Sphere 1894 2075 5.7 6.3 

Step 1867 2237 5.8 6.3 

Rastrigin 7253 9260 25 31 

Schwefel 12649 13974 35 39 

Griewank 1706 1818 8.0 8.5 

Rosenbrock 10063 10063 84 84 

Ackley 4099 4487 22 26 

 

Compared with 100-dimensional minimization, for 200-dimensional functions the ABC 

algorithm is performed slower due to increase of solution space. Also, the most challenging 

Rosenbrock functions was optimized only once in ten times. The approximate slowness rate 

which is estimated as ratio between averaged the most quick and the most slow optimization 

times lies in range from 2.4 to 3 times against 100d functions depending on function’s search 

complexity. Also, the number of iterations increases at least in 2 times. It indicates a need for 

the development of methods to accelerate the execution of calculations.  

The high-dimensional 200d problems require a significant increase in calculation time 

compared to 50d or 100d problems, especially for the most complex functions. The complexity 

ratio r = MostSimpleFunc_execution_time/Rosenbrock_execution_time for each dimension 

equals 
50 0.14dr = , 

100 0.1dr = , 
200 0.07dr =  and decreases approximately by 0.3-0.4 with the 

increase of problem dimension. This ratio may vary depending on the parameters of the 

algorithm, namely the number of bees and the trial parameter. An important problem in such 

calculations is the correct selection of hyper-parameters, which can be carried out using a 

meta-optimizer. 

Parallel ABC results. The results of the single-process sequential implementation of the 

ABC algorithm clearly indicate the need for parallelization of calculations. One possible 

solution based on fig. 4 is outlined in this section. 

To test fmABC algorithm we have chosen 200d problems and have set the following 

parameters:  4,6procn = , 
_ 60 _sub colonySN n proc= , max_ 12000cycles = . Here the same 

number of SN  which has been used in sequential algorithm for the given dimension is divided 

among _n proc  processes. That is, the number of agents involved in the work in the single-

process version in this case is divided by executor processes that implement the work of the 

sequential algorithm independently of each other. Each process executes 10 inner iterations of 

ABC before the exchange with the best solution is done. 

The results of experiments conducted for 4 and 6 cores are presented in Tables 5, 6. The 

proposed scheme of parallelization (fig. 4) reduces either the number of iterations and total 

execution time for both 4 and 6 cores spanning. Despite the computing load, which involves 

the creation of processes by the operating system, the developed parallelization scheme shows 

a significant increase in execution time. 
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Table 5. 200D functions parallel ABC results (4 cores) 

f Iterations Time (sec.) 

Best Worst Best Worst 

Sphere 187 197 4.2 4.8 

Step 181 194 4.4 4.7 

Rastrigin 358 390 9.2 10.3 

Schwefel 704 878 15.7 19.9 

Griewank 113 183 3.7 5.9 

Rosenbrock 972 11691 30 350 

Ackley 310 322 10.3 11.1 

 

The average execution time (4 cores) except Rosenbrock function in case of 200d 

sequential runs equals 18.2 seconds. The parallel version for 200d problems requires in average 

8.7 seconds and in fact is more than twice faster in comparison with the sequential 

implementation. Rosenbrock function was correctly optimized during the each of ten 

experiments, whereas the sequential approach was able to complete the task only once in a 

row. Also, the best result for Rosenbrock optimization was obtained in lower number of 

seconds during the parallel runs. 

 
Table 6. 200D functions parallel ABC results (6 cores) 

f Iterations Time (sec.) 

Best Worst Best Worst 

Sphere 193 209 3.1 3.4 

Step 197 205 3.3 3.6 

Rastrigin 304 371 5.9 7.2 

Schwefel 561 1100 9.1 17.9 

Griewank 109 208 2.5 4.8 

Rosenbrock** 1184 11767 24.3 242 

Ackley 301 320 7.4 8.1 

 

The parallel routine distributed in 6 cores results in average (except Rosenbrock function) 

6.4 seconds. This result is even faster than 4 cores parallelism, which is actually obvious in the 

given circumstances. And although the number of iterations to achieve the result has not 

changed critically, the amount of time spent on optimization has been decreased. Also, in this 

particular case Rosenbrock function was successfully minimized only by 9/10 times**. 

However, the execution time is also better than 4 cores implementation. It is interesting that the 

reduction of the number of agents in 6 processes compared to 4 processes affects the search 

capacity and, in the case of a rather complex Rosenbrock function, reduces the minimization 

efficiency. This leads to the fact that it is necessary to study this aspect in the case of complex 

hyper-surfaces. 

The strength of the proposed parallel approach is that the exchange mechanism between 

processes can be implemented in different ways, not only replacing the best solutions in each 

process with the best of all, but also experimenting with various schemes of inter-process 

migrations. 
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Conclusions. Since the Python 3 programming language is a standard in the development 

of both mathematical models and the implementation of machine learning algorithms, it is 

relevant to study parallelization taking into account its limitations. Swarm algorithms such as 

ABC being highly parallel in their nature can be actively used as the numerical optimization 

methods implemented specifically in the Python 3 ecosystem. Hence this work is the additional 

step forward developing the swarm-based Python 3 solutions.  

Here we have studied a process of improving the standard ABC algorithm in a parallel 

form. Based on Python 3 implementation we have conducted several experiments with the 

sequential algorithm. Given seven benchmark 50, 100 and 200 dimensional functions of the 

different complexity we applied ABC method to minimize each of them and identified 

corresponding number of iterations and execution time to achieve the global minima. Because 

standard ABC approach has a lot of spots to make it more efficient and to speed up 

computations, we present a simple and effective parallelization scheme. 

This scheme involves splitting the entire population of solutions into sub-groups across 

processes and running each of them in parallel. To force the search capabilities, we propose 

exchange mechanism: the best solution among all sub-groups (sub-swarms) replaces the best 

solution in each sub-group after some predefined number of local (inside each process) 

iterations. These iterations are just a standard sequential execution of employed, onlooker and 

scout bees phases. The comparative study between sequential and parallel forms of ABC 

revealed that proposed parallel scheme outperforms sequential in terms of execution time and 

number of iterations. Also, such a scheme can serve as a basis for further research of parallel 

swarm algorithms. 
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Ройові алгоритми, такі як штучний бджолиний рій (ABC), будучи паралельними за 

своєю природою, можуть використовуватися як чисельні методи оптимізації, реалізовані в 

екосистемі Python 3. Оскільки мова програмування Python 3 є стандартом у розробці як 

математичних моделей, так і реалізації алгоритмів машинного навчання, актуальним є 

вивчення розпаралелювання з урахуванням його обмежень. Дане дослідження є 

додатковим кроком у розробці рішень Python 3 на основі ройового інтелекту. 

У роботі вивчається процес вдосконалення стандартного алгоритму ABC у паралельній 

формі. На основі реалізації Python 3 проведені чисельні експерименти з класичним 

послідовним алгоритмом. Враховуючи сім еталонних 50, 100 і 200-вимірних функцій різної 

складності, застосовано метод ABC для мінімізації кожної з них і визначено відповідну 

кількість ітерацій та час виконання для досягнення глобальних мінімумів. Оскільки 

стандартний підхід ABC має багато місць, щоб зробити його більш ефективним і 

прискорити обчислення, ми представляємо просту та ефективну схему його 

розпаралелювання. Ця схема передбачає розбиття всієї популяції рішень на підгрупи за 

процесами та виконання кожного з них паралельно. Щоб посилити можливості пошуку, ми 

пропонуємо механізм обміну: найкращий розв’язок серед усіх підгруп замінює найкраще 

рішення в кожній підгрупі після попередньо визначеної кількості локальних (всередині 

кожного процесу) ітерацій. Ці ітерації є лише стандартним послідовним виконанням фаз 

зайнятих бджіл, бджіл-спостерігачів і бджіл-розвідників. Порівняльне дослідження між 

послідовними та паралельними формами ABC показало, що запропонована паралельна 

схема перевершує послідовну з точки зору часу виконання та кількості ітерацій. Також, 

така схема може бути основою для подальших досліджень паралельних ройових 

алгоритмів. 

Ключові слова: штучний бджолиний рій; метаевристика; ройовий інтелект; чисельна 

оптимізація; багатопроцесність. 
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