
ISSN 2224-087X. Електроніка та інформаційні технології. 2024. Випуск 25. С. 30–41

Electronics and information technologies. 2024. Issue 25. P. 30–41

© Sinkevych O., Boyko V., Monastyrsky L., Sokolovsky B. 2024

UDC 004.4 DOI: https://doi.org/10.30970/eli.25.3

STUDY OF PARALLEL MODEL OF ARTIFICIAL BEE COLONY

ALGORITHM

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

Radioelectronic and Computer Systems Department,

 Ivan Franko National University of Lviv,

50 Drahomanova St., UA–79005 Lviv, Ukraine

oleh.sinkevych@lnu.edu.ua

The paper presents the exploration of artificial bee colony optimization algorithm for multi-

dimension functions which is implemented in Python 3. Due to increase of the searching

complexity, the high dimensional applied problems require development of the concurrent

computing approaches which involve either parallel or asynchronous programming. The latter

causes growth of general runtime and becomes bottleneck of single-processing implementation.

In order to deal with the raised issue, we propose the parallelization algorithms based on

multiprocessing library. The developed parallel approaches have shown the significant increase of

the performance and allow taking into account multi-dimensional character of optimization

problems. Despite the limitation of Python 3 multi-threading capabilities and the computational

cost of creating execution processes, the proposed and explored approaches have demonstrated

their efficiency for a number of benchmark functions.

Keywords: artificial bee colony; meta-heuristics; swarm intelligence; numerical optimization;

multi-processing.

Introduction. Evolutionary computations, swarm intelligence and other meta-heuristics

have earned recognition as simple and at the same time effective family of algorithms for

solving complex and combinatorial problems [1]. The most of them are based on a biological

evolution principle, where each generation (candidate solution) is developing during the outer

conditions and interaction with each other. Different kinds of reproduction, mutation,

recombination, and selection define the processes of their computational behavior [2].

Among the vast group of evolutionary methods, nature-inspired meta-heuristics are of

considerable interest, in particular, because of solid performance in many of engineering

problems [3]. In general, the core principle of such approaches is the reproduction of

behavioral patterns of collective living beings aimed at solving everyday problems. For

instance, artificial bee colony (ABC) [4] mimics the process of seeking good food sources

which is applied to diverse optimization routines; artificial ant colony (AAC) that simulates

pheromone communication [5] is usually used in routing tasks; gray wolf optimization which is

based on complex social hierarchy (GWO) [6] can be applied to feature selection in machine

learning pipelines.

The major advantages of the mentioned techniques are good scalability to the higher

dimensional problems, ease of parallelism, robustness to noise and flexibility of customization

[7]. Despite the important drawback, which consists in significant computational costs, namely

in a large number of calculations of the fitness function, swarm meta-heuristics can be a

https://doi.org/10.30970/eli.25.
mailto:oleh.sinkevych@lnu.edu.ua

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

31

suitable choice, if the possibility of parallelization of calculations is available. For example, in

[8] parallel ABC algorithm which utilizes MPI programming environment has been proposed

and studied; in [9] authors provide brief overview of GPU-based meta-heuristics; in [10] the

implementation of high-level parallel AAC is described and explored; in [11] a comprehensive

survey on parallel particle swarm optimization (PSO) algorithms is presented along with their

parallelization strategies and applications.

In this article, an attempt is made to analyze the results of the implementation of ABC

algorithm, both in single process mode and in their multi-process version. Typically, the

application of ABC algorithm for real-world problems require a huge number of the

computational agents, hence the parallelization techniques are preferable to speedup general

performance. There are a bunch of studies dedicated to parallelization of ABC: in [12] author

propose the parallel ABC based on colony division and mutation mechanics during the

employed bee phase; in [13] asynchronous ABC was examined; in [14] the traditional emigrant

selection strategy was replaced with a novel cooperative model, which was then examined

using the widely adopted ring neighborhood topology. Interesting modification was proposed

in [15] where author suggest using swapping mechanism to improve migration and solution

sharing between sub-colonies.

The motivation of this study is determined by the prospect of parallel application of this

algorithm in the tasks of neural network fine-tuning and its deployment within the framework

of a multi-agent system. Multi-process implementation is based on Python programming

language and multiprocessing library [16]; this choice is justified by the prevalence of the

Python stack in machine learning and allows the integration of the ABC algorithm into existing

deep learning frameworks. To investigate the implementations, we considered the

minimization problems of seven benchmark functions with variable dimensions.

Sequential ABC algorithm. The first appearance of the algorithm dates back to 2005,

when D. Karaboga proposed the use of honey bee swarm concept for solving optimization

problems [17]. Since that time, numerous variants and modifications of ABC have been widely

studied. The reason of this is the decent effectiveness in solving many applied and engineering

problems. Like many other swarm approaches, in the ABC agents (bees) are trying to find the

best solution in predefined region being communicating, sharing information and performing

specific roles.

Let’s consider the typical unconstrained minimization problem:

()* argmin , Df= x x x R , (1)

where x is the D-dimensional vector, f is the objective function and *
x is the global mini-

mum.

The ABC algorithm aims to solve this problem by performing several simple steps, which

are determined by three search phases: employed bees, onlooker bees and scout bees. Before

these phases start, it is necessary to set up the initial state of the routine. Firstly, SN vectors

(candidate solutions) are generated as follows

()(), rand 0,1lb ub lb
i j j j jx x x x= + − , (2)

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

32

where  1,i SN , SN is the parameter of ABC which specifies the number of searching bees,

,i jx is the j-th component of the vector ix ,
lb
jx and

ub
jx are the lower and upper bounds of

each component, ()rand 0,1 returns the random value in range [0, 1]. Number of bees is

usually set equal to candidate solutions.

After the initialization is done, employed bees phase starts. During this step each

employed bee generates the i-th solution using the next formulae:

(), , , ,i j i j i j k jv x x x= + − , (3)

where  is the random value from uniformly distributed range in [-1, 1], ,k jx is the neighbor

of ,i jx . For each vector v , fitness function is calculated as:

() () () ()() ()1 : 0 1 1 : 0i i i i ifit f f or f f = +  +  v v v v v . (4)

Depends on its value, i.e., if () ()i ifit fitv x , then a new candidate solution iv replaces

previous ix . If the candidate solution has not been improved, it remains the same.

The onlooker bees phase helps to investigate the new solutions in the neighborhood of

each ix after the employed phase has been performed. It starts with the probabilities calcula-

tion via

() () ()
1

SN

i i n
n

p fit fit
=

= x x x . (5)

As soon as probabilities have been obtained, each bee i ,  1,i SN works on improving

the solution in the neighborhood based on the condition () ()0,1 irand p x . If it is satisfied,

then bee uses (3) and (4) to update the solution. If not, then the next 1i + bee makes the same

step until all bees meet the condition () ()rand 0,1 ip x . The purpose of this step is to enhance

exploration process.

The last phase is scout bees. At the beginning, a trial counter is assigned to each solution

ix . It signifies how many times that solution was not improved via employed bees and

onlooker bees phase. Each scout bee checks corresponding trial counter and re-initialize

solution via (2), if the trials reach predefined limit. It is recommended to set the limit value as

*D SN or * / /2D SN .

To sum up, one iteration of the sequential ABC algorithm works as follows:

➢ solutions and bees initialization;

➢ employed bee phase;

➢ calculating the probabilities via (5);

➢ onlooker bees phase;

➢ scout bees phase.

The proposed Python 3 sequential implementation consists of two separate modules. The

first one (fig. 1, 2) holds Agent class which represents the bee object and

UnconstrainedSwarm class with the implementation of the algorithm. The second one

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

33

consists of the main ABC phases implemented as the separate functions (fig. 3). Each of them

implements the respective behavior as well as assures modularity and code flexibility.

Fig. 1. UML diagram of Agent class Fig. 2. UML diagram of UnconstrainedSwarm

class

To increase the performance, all array data were implemented using Numpy package,

which allows vectorizing computations.

Fig. 3. UML module diagram for main ABC implementation

Parallel ABC algorithm. Regardless of numerous tasks, where the application of a

sequential single-process/thread ABC algorithm demonstrates high efficiency, complex and

multidimensional real-world problems require the parallelization of algorithm to speed up

calculations. For instance, the industry routing or mechanical engineering tasks require a huge

amount of computations which are time consuming and inefficient in the case of one

core/thread implementation. With this in mind, it is necessary to develop, to research and to

improve parallel ABC algorithms to speed up performance.

Since the development of concurrent algorithms quite often requires deep modification of

their sequential counterparts, such a task can be outlined by the following statements:

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

34

• parallel or asynchronous implementation performance should not be worse than

sequential;

• with the increase of complexity, parallel implementations should gain more and more

effectiveness compared to the sequential approaches.

The most common idea for the parallelization of the ABC algorithm is to divide the

colony of bees into a set of sub-colonies that correspond to a separate process or thread [19].

Hence, each colony works on improving the solution separately from others. After the parallel

(or in some cases asynchronous) work has been completed, sub-colonies communicate with

each other and exchange information about their local solutions [20]. Actually, the details of

the last stage are the most complex and important when designing this kind of algorithms.

To set up the starting point of the study, in this work we consider a type of parallel ABC

implementation, namely where force max or fmABC technique. Since the standard Python 3

(CPython implementation) is, generally speaking, limited in the sense of multithreading due to

GIL blocking, we used the multi-processing module for the development [21].

We propose the simple parallel fmABC algorithm (fig. 4) which works as follows:

1) the whole array of solution SN is equally divided into sub-solutions (sub-colonies)

and is assigned to separate process which holds isolated UnconstrainedSwarm and

corresponding Agent objects;

2) inside each allocated process, sequential ABC performs default steps and produces

recurring local results i=X x , 1 1.. _SN n proc= , where _n proc is number of

machine processors, best solution xBest and fitness fitBest values;

3) after all processes complete their job, the best solution

()* argmax |=xBest fitBest xBest among all processes is determined;

4) the best solutions in each of i-th UnconstrainedSwarm is replaced by *
xBest .

Calculations are performed for a predetermined number of iterations, or until the

condition regarding the accuracy of calculated solution is met. During the operations, the best

solution is forced among all sub-colonies, which causes selection pressure on them. This makes

sub-colony to reinforce a better solution. The disadvantages of this approach are spread of the

same solution vector across all sub-colonies and the reduction of their diversity. However, as

the numerical experiments in the next section will show, this technique demonstrates good

efficiency in comparison with the sequential algorithm.

The core action part inside both implementations is sequential ABC which can be either

modified to improve the performance. There are a lot of modifications which increase

execution time and convergence to global optima; nevertheless it is hard to find one optimal

version for all problems. Therefore, in this paper we consider the canonical version of the

algorithm.

Each sub-colony that performs the standard steps of the ABC algorithm is a separate

object of the Swarm class (method run()), which is inherited from the multiprocessing.

Process class and UnconstrainedSwarm. As soon as all processes complete their internal

operations, the local Swarm objects are extracted from the corresponding processes through

the Queue object, which allows processes to communicate with each other.

Python parallelization through the multiprocessing library have the drawbacks, which

consist of the "costliness" of creating individual processes and a slowing factor such as the use

of a queue object. In contrast to full-fledged multithreading, as in the C or C++ language,

where threads have free access to a common object in memory, multiprocessing requires the

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

35

creation of a communication mechanism between independent processes, which slows down

the work and introduces additional computational complexity.

Fig. 4. Parallel ABC algorithm

Experiments and results. To carry out numerical experiments and to compare single

process and multi-process implementation of the ABC algorithm we have considered seven

benchmark functions [22], defined in Table 1.

Table 1. Benchmark functions

The first two are relatively simple unimodal functions with one global minimum.

Rastrigin function is non-convex function with a large number of local minima and global

minima in 0ix = , 1..i D= . The hyper-surface of the Schwefel function has a rather complex

shape with many local minimum and a global minimum at point 420.9687ix = , 1..i D= ,

which unlike the previous ones, is shifted relative to the origin. Griewank function has a lot of

widespread regularly distributed local minimums. In our opinion, as demonstrated by the

following results, the Rosenbrock function is the most complex among the given seven

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

36

functions because it has a rather narrow valley of complex curvature around the global

minimum. The hyper-surface of the Ackley function is quite complex with one global

minimum 0ix = , 1..i D= . Almost all their minimization procedures are not trivial for

classical gradient based algorithm.

Sequential ABC results. We have conducted a bunch of numerical experiments with the

sequential ABC algorithm based on the following parameters:

➢ 50D functions: SN=60, max_cycles=2000, accuracy_eps = 1e-2, trials=d ∗ SN//2

➢ 100D functions: SN=60, max_cycles=10000, accuracy_eps = 1e-2, trials=d ∗ SN//2

➢ 200D functions: SN=60, max_cycles=14000, accuracy_eps = 1e-2, trials=d ∗ SN//2.

For each function and for each dimension we made ten experiments. The aforementioned

hyper-parameters of the ABC algorithm were selected based on the analysis of relevant

publications. All experiments conducted on 12 cores 12th Gen Intel(R) Core(TM) i5-1235U

with 24 GB DDR4 RAM.

The results of experiments are depicted in Table 2-4. Here we point the best and worst

computation times over ten runs of the program, as well as the smallest and largest number of

iterations spent on the search.

Table 2. 50D functions ABC results

f Iterations Time (sec.)
Best Worst Best Worst

Sphere 602 710 1.5 1.8

Step 603 710 1.5 2.1

Rastrigin 1380 2123 4.2 6.5

Schwefel 1907 2880 5.0 7.5

Griewank 355 472 1.3 1.7

Rosenbrock 1856 4893 10.3 17

Ackley 875 1037 3.6 4.2

Table 3. 100D functions ABC results

f Iterations Time (sec.)

Best Worst Best Worst

Sphere 846 1015 2.4 3.0

Step 884 1002 2.6 2.9

Rastrigin 3076 4441 9.4 14

Schwefel 5201 7481 15.6 19.5

Griewank 718 978 2.8 3.9

Rosenbrock 5916 8145 22 30

Ackley 1937 2239 9.0 10.1

The application of the ABC algorithm to the minimization of 50-dimensional functions

demonstrates a decent solution efficiency and relatively small execution time. Rosenbrock and

Schwefel functions which are the most complicated in this list predictably require more time

and iterations to be minimized.

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

37

Table 4. 200D functions ABC results

f Iterations Time (sec.)

Best Worst Best Worst

Sphere 1894 2075 5.7 6.3

Step 1867 2237 5.8 6.3

Rastrigin 7253 9260 25 31

Schwefel 12649 13974 35 39

Griewank 1706 1818 8.0 8.5

Rosenbrock 10063 10063 84 84

Ackley 4099 4487 22 26

Compared with 100-dimensional minimization, for 200-dimensional functions the ABC

algorithm is performed slower due to increase of solution space. Also, the most challenging

Rosenbrock functions was optimized only once in ten times. The approximate slowness rate

which is estimated as ratio between averaged the most quick and the most slow optimization

times lies in range from 2.4 to 3 times against 100d functions depending on function’s search

complexity. Also, the number of iterations increases at least in 2 times. It indicates a need for

the development of methods to accelerate the execution of calculations.

The high-dimensional 200d problems require a significant increase in calculation time

compared to 50d or 100d problems, especially for the most complex functions. The complexity

ratio r = MostSimpleFunc_execution_time/Rosenbrock_execution_time for each dimension

equals
50 0.14dr = ,

100 0.1dr = ,
200 0.07dr = and decreases approximately by 0.3-0.4 with the

increase of problem dimension. This ratio may vary depending on the parameters of the

algorithm, namely the number of bees and the trial parameter. An important problem in such

calculations is the correct selection of hyper-parameters, which can be carried out using a

meta-optimizer.

Parallel ABC results. The results of the single-process sequential implementation of the

ABC algorithm clearly indicate the need for parallelization of calculations. One possible

solution based on fig. 4 is outlined in this section.

To test fmABC algorithm we have chosen 200d problems and have set the following

parameters:  4,6procn = ,
_ 60 _sub colonySN n proc= , max_ 12000cycles = . Here the same

number of SN which has been used in sequential algorithm for the given dimension is divided

among _n proc processes. That is, the number of agents involved in the work in the single-

process version in this case is divided by executor processes that implement the work of the

sequential algorithm independently of each other. Each process executes 10 inner iterations of

ABC before the exchange with the best solution is done.

The results of experiments conducted for 4 and 6 cores are presented in Tables 5, 6. The

proposed scheme of parallelization (fig. 4) reduces either the number of iterations and total

execution time for both 4 and 6 cores spanning. Despite the computing load, which involves

the creation of processes by the operating system, the developed parallelization scheme shows

a significant increase in execution time.

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

38

Table 5. 200D functions parallel ABC results (4 cores)

f Iterations Time (sec.)

Best Worst Best Worst

Sphere 187 197 4.2 4.8

Step 181 194 4.4 4.7

Rastrigin 358 390 9.2 10.3

Schwefel 704 878 15.7 19.9

Griewank 113 183 3.7 5.9

Rosenbrock 972 11691 30 350

Ackley 310 322 10.3 11.1

The average execution time (4 cores) except Rosenbrock function in case of 200d

sequential runs equals 18.2 seconds. The parallel version for 200d problems requires in average

8.7 seconds and in fact is more than twice faster in comparison with the sequential

implementation. Rosenbrock function was correctly optimized during the each of ten

experiments, whereas the sequential approach was able to complete the task only once in a

row. Also, the best result for Rosenbrock optimization was obtained in lower number of

seconds during the parallel runs.

Table 6. 200D functions parallel ABC results (6 cores)

f Iterations Time (sec.)

Best Worst Best Worst

Sphere 193 209 3.1 3.4

Step 197 205 3.3 3.6

Rastrigin 304 371 5.9 7.2

Schwefel 561 1100 9.1 17.9

Griewank 109 208 2.5 4.8

Rosenbrock** 1184 11767 24.3 242

Ackley 301 320 7.4 8.1

The parallel routine distributed in 6 cores results in average (except Rosenbrock function)

6.4 seconds. This result is even faster than 4 cores parallelism, which is actually obvious in the

given circumstances. And although the number of iterations to achieve the result has not

changed critically, the amount of time spent on optimization has been decreased. Also, in this

particular case Rosenbrock function was successfully minimized only by 9/10 times**.

However, the execution time is also better than 4 cores implementation. It is interesting that the

reduction of the number of agents in 6 processes compared to 4 processes affects the search

capacity and, in the case of a rather complex Rosenbrock function, reduces the minimization

efficiency. This leads to the fact that it is necessary to study this aspect in the case of complex

hyper-surfaces.

The strength of the proposed parallel approach is that the exchange mechanism between

processes can be implemented in different ways, not only replacing the best solutions in each

process with the best of all, but also experimenting with various schemes of inter-process

migrations.

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

39

Conclusions. Since the Python 3 programming language is a standard in the development

of both mathematical models and the implementation of machine learning algorithms, it is

relevant to study parallelization taking into account its limitations. Swarm algorithms such as

ABC being highly parallel in their nature can be actively used as the numerical optimization

methods implemented specifically in the Python 3 ecosystem. Hence this work is the additional

step forward developing the swarm-based Python 3 solutions.

Here we have studied a process of improving the standard ABC algorithm in a parallel

form. Based on Python 3 implementation we have conducted several experiments with the

sequential algorithm. Given seven benchmark 50, 100 and 200 dimensional functions of the

different complexity we applied ABC method to minimize each of them and identified

corresponding number of iterations and execution time to achieve the global minima. Because

standard ABC approach has a lot of spots to make it more efficient and to speed up

computations, we present a simple and effective parallelization scheme.

This scheme involves splitting the entire population of solutions into sub-groups across

processes and running each of them in parallel. To force the search capabilities, we propose

exchange mechanism: the best solution among all sub-groups (sub-swarms) replaces the best

solution in each sub-group after some predefined number of local (inside each process)

iterations. These iterations are just a standard sequential execution of employed, onlooker and

scout bees phases. The comparative study between sequential and parallel forms of ABC

revealed that proposed parallel scheme outperforms sequential in terms of execution time and

number of iterations. Also, such a scheme can serve as a basis for further research of parallel

swarm algorithms.
REFERENCES

[1] A comprehensive survey: artificial bee colony (ABC) algorithm and applications / Dervis

Karaboga [et al.] // Artificial Intelligence Review. – 2012. – Т. 42, № 1. – С. 21–57. –

DOI: https://doi.org/10.1007/s10462-012-9328-0 .

[2] Hassanien A. E. Swarm Intelligence: Principles, Advances, and Applications / Aboul Ella

Hassanien, Eid Emary. Taylor & Francis Group, 2018. – 210 с.

[3] Chopra D. Swarm Intelligence in Data Science: Challenges, Opportunities and

Applications / Deepti Chopra, Praveen Arora // Procedia Computer Science. – 2022. –

Vol. 215. – P. 104–111. DOI: https://doi.org/10.1016/j.procs.2022.12.012 .

[4] Foundations of Fuzzy Logic and Soft Computing / ed. by P. Melin [et al.]. – Berlin,

Heidelberg: Springer Berlin Heidelberg, 2007. DOI: https://doi.org/10.1007/978-3-540-

72950-1.

[5] Dorigo M. Ant colony optimization theory: A survey / Marco Dorigo, Christian Blum //

Theoretical Computer Science. – 2005. – Vol. 344, no. 2-3. – P. 243–278.

DOI: https://doi.org/10.1016/j.tcs.2005.05.020 .

[6] Mirjalili S. Grey Wolf Optimizer / Seyedali Mirjalili, Seyed Mohammad Mirjalili,

Andrew Lewis // Advances in Engineering Software. – 2014. – Vol. 69. – P. 46–61.

DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007 .

[7] Boussaïd I. A survey on optimization metaheuristics / Ilhem Boussaïd, Julien Lepagnot,

Patrick Siarry // Information Sciences. – 2013. – Vol. 237. – P. 82–117. – Mode of

access: https://doi.org/10.1016/j.ins.2013.02.041 .

https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1016/j.procs.2022.12.012
https://doi.org/10.1007/978-3-540-72950-1
https://doi.org/10.1007/978-3-540-72950-1
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.ins.2013.02.041

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

40

[8] Hong Y. Research of Parallel Artificial Bee Colony Algorithm Based on MPI / Yingsen

Hong, Zhenzhou Ji, Chunlei Liu // 2nd International Conference on Computer Science

and Electronics Engineering (ICCSEE 2013), China, 22–23 March 2013. – Paris, France,

2013. DOI: https://doi.org/10.2991/iccsee.2013.339 .

[9] A comparative study of GPU metaheuristics for data clustering / Mario Santos [et al.] //

2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC),

Melbourne, Australia, 17–20 October 2021. – [S. l.], 2021.

DOI: https://doi.org/10.1109/smc52423.2021.9658803 .

[10] High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons / Breno A. de

Melo Menezes [et al.] // International Journal of Parallel Programming. – 2021.

DOI: https://doi.org/10.1007/s10766-021-00714-1 .

[11] A Survey on Parallel Particle Swarm Optimization Algorithms / Soniya Lalwani [et al.] //

Arabian Journal for Science and Engineering. – 2019. – Vol. 44, no. 4. – P. 2899–2923.

DOI: https://doi.org/10.1007/s13369-018-03713-6 .

[12] Harikrishna Narasimhan. Parallel artificial bee colony (PABC) algorithm / Harikrishna

Narasimhan // 2009 World Congress on Nature & Biologically Inspired Computing

(NaBIC), Coimbatore, India, 9–11 December 2009. – [S. l.], 2009.

DOI: https://doi.org/10.1109/nabic.2009.5393726 .

[13] Akay B. Synchronous and asynchronous Pareto-based multi-objective Artificial Bee

Colony algorithms / Bahriye Akay // Journal of Global Optimization. – 2012. – Vol. 57,

no. 2. – P. 415–445. – DOI: https://doi.org/10.1007/s10898-012-9993-1 .

[14] Karaboga D. A new emigrant creation strategy for parallel Artificial Bee Colony

algorithm / Dervis Karaboga, Selcuk Aslan // 2015 9th International Conference on

Electrical and Electronics Engineering (ELECO), Bursa, 26–28 November 2015. – [S. l.],

2015. DOI: https://doi.org/10.1109/eleco.2015.7394477.

[15] Aslan S. A new emigrant utilization strategy for parallel artificial bee colony algorithm /

Selcuk Aslan // Evolving Systems. – 2019. DOI: https://doi.org/10.1007/s12530-019-

09294-5.

[16] Python Parallel Processing and Multiprocessing: A Rivew / Zina A. Aziz [et al.] //

Academic Journal of Nawroz University. – 2021. – Vol. 10, no. 3. – P. 345–354. DOI:

https://doi.org/10.25007/ajnu.v10n3a1145.

[17] Karaboga D. An Idea Based in Honey Bee Swarm for Numerical Optimization / Dervis

Karaboga // Artificial Bee Colony (ABC) Algorithm Homepage. – Mode of

access: https://abc.erciyes.edu.tr/pub/tr06_2005.pdf .

[18] Slowik A. Nature Inspired Methods and Their Industry Applications–Swarm Intelligence

Algorithms / Adam Slowik, Halina Kwasnicka // IEEE Transactions on Industrial Infor-

matics. – 2018. – Vol. 14, no. 3. – P. 1004–1015.

DOI: https://doi.org/10.1109/tii.2017.2786782 .

[19] Research and implementation of parallel artificial bee colony algorithm based on ternary

optical computer / Shuang Li [et al.] // Automatika. – 2019. – Vol. 60, no. 4. – P. 423–

432. DOI: https://doi.org/10.1080/00051144.2019.1639118 .

[20] Parpinelli R. S. Parallel Approaches for the Artificial Bee Colony Algorithm / Rafael

Stubs Parpinelli, César Manuel Vargas Benitez, Heitor Silvério Lopes // Adaptation,

https://doi.org/10.2991/iccsee.2013.339
https://doi.org/10.1109/smc52423.2021.9658803
https://doi.org/10.1007/s10766-021-00714-1
https://doi.org/10.1007/s13369-018-03713-6
https://doi.org/10.1109/nabic.2009.5393726
https://doi.org/10.1007/s10898-012-9993-1
https://doi.org/10.1109/eleco.2015.7394477
https://doi.org/10.25007/ajnu.v10n3a1145
https://abc.erciyes.edu.tr/pub/tr06_2005.pdf
https://doi.org/10.1109/tii.2017.2786782
https://doi.org/10.1080/00051144.2019.1639118

O. Sinkevych, V. Boyko, L. Monastyrsky, B. Sokolovsky

ISSN 2224-087X. Electronics and information technologies. 2024. Issue 25

41

Learning, and Optimization. – Berlin, Heidelberg, 2011. – P. 329–345.

DOI: https://doi.org/10.1007/978-3-642-17390-5_14.

[21] Arjona A. Transparent serverless execution of Python multiprocessing applications / Aitor

Arjona, Gerard Finol, Pedro García López // Future Generation Computer Systems. –

2022. DOI: https://doi.org/10.1016/j.future.2022.10.038 .

[22] Jamil M. A literature survey of benchmark functions for global optimisation problems /

Momin Jamil, Xin She Yang // International Journal of Mathematical Modelling and Nu-

merical Optimisation. – 2013. – Vol. 4, no. 2. – P. 150.

DOI: https://doi.org/10.1504/ijmmno.2013.055204 .

ДОСЛІДЖЕННЯ ПАРАЛЕЛЬНОЇ МОДЕЛІ АЛГОРИТМУ ШТУЧНОГО

БДЖОЛИНОГО РОЮ

О. Сінькевич, В. Бойко, Л. Монастирський, Б. Соколовський

кафедра радіоелектронних і комп’ютерних систем,

Львівський національний університет імені Івана Франка,

вул. Драгоманова, 50, 79005 Львів, Україна

oleh.sikevych@lnu.edu.ua

Ройові алгоритми, такі як штучний бджолиний рій (ABC), будучи паралельними за

своєю природою, можуть використовуватися як чисельні методи оптимізації, реалізовані в

екосистемі Python 3. Оскільки мова програмування Python 3 є стандартом у розробці як

математичних моделей, так і реалізації алгоритмів машинного навчання, актуальним є

вивчення розпаралелювання з урахуванням його обмежень. Дане дослідження є

додатковим кроком у розробці рішень Python 3 на основі ройового інтелекту.

У роботі вивчається процес вдосконалення стандартного алгоритму ABC у паралельній

формі. На основі реалізації Python 3 проведені чисельні експерименти з класичним

послідовним алгоритмом. Враховуючи сім еталонних 50, 100 і 200-вимірних функцій різної

складності, застосовано метод ABC для мінімізації кожної з них і визначено відповідну

кількість ітерацій та час виконання для досягнення глобальних мінімумів. Оскільки

стандартний підхід ABC має багато місць, щоб зробити його більш ефективним і

прискорити обчислення, ми представляємо просту та ефективну схему його

розпаралелювання. Ця схема передбачає розбиття всієї популяції рішень на підгрупи за

процесами та виконання кожного з них паралельно. Щоб посилити можливості пошуку, ми

пропонуємо механізм обміну: найкращий розв’язок серед усіх підгруп замінює найкраще

рішення в кожній підгрупі після попередньо визначеної кількості локальних (всередині

кожного процесу) ітерацій. Ці ітерації є лише стандартним послідовним виконанням фаз

зайнятих бджіл, бджіл-спостерігачів і бджіл-розвідників. Порівняльне дослідження між

послідовними та паралельними формами ABC показало, що запропонована паралельна

схема перевершує послідовну з точки зору часу виконання та кількості ітерацій. Також,

така схема може бути основою для подальших досліджень паралельних ройових

алгоритмів.

Ключові слова: штучний бджолиний рій; метаевристика; ройовий інтелект; чисельна

оптимізація; багатопроцесність.

Стаття надійшла до редакції 16.02.2024.

Прийнята до друку 23.02.2024.

https://doi.org/10.1007/978-3-642-17390-5_14
https://doi.org/10.1016/j.future.2022.10.038
https://doi.org/10.1504/ijmmno.2013.055204
mailto:oleh.sikevych@lnu.edu.ua

