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In this study, the analytical system for processing Ukrainian and Russian texts and automati-
cally detecting fake news was developed. The effectiveness of text message classification using
the naive Bayes classifier, support vector machine, k-nearest neighbors, random forest and logistic
regression methods was studied. It has been established that adding to the feature vector the num-
ber of positive and negative words, the text tone, and the aggression presence makes it possible to
increase the accuracy of detecting fake news for developed machine learning models. The meth-
ods of support vector machine and logistic regression demonstrate the highest effectiveness of
text message classification.
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1. Introduction

The large volume of information that has become traditional for the information society
creates new challenges for humanity. The usual newspaper, the radio and TV news are begin-
ning to give way to new means of disseminating information on a global scale and in real-time
due to the invention of the Internet and the emergence of social networks. Social media not
only provide instant transmission of information, photos, and video content but also encourage
users to participate in online discussions of news. This activism around Internet news can lead
to serious societal consequences. The problem of difficult access to information, which was
relevant earlier, is being replaced by new problems: structuring and analyzing information and
determining its reliability. Disinformation has become one of the biggest problems in today's
digital world, a threat to democracy and freedom of expression [1, 2]. Manipulative distortion
of facts and fake news as tools of information warfare can influence the public's views on spe-
cific world events, military conflicts, and relations between states. As a result, significant polit-
ical and economic losses can be caused. In particular, a large flow of disinformation was relat-
ed to the Brexit referendum and the US presidential election in 2016.

Kremlin propaganda actively produces fake news to carry out cultural, religious, and in-
formational expansion. With the beginning of a full-scale Russian invasion of the territory of
Ukraine, an even stronger wave of aggressor disinformation began, and cyberspace became a
battleground for the preservation of the country's viability. Therefore, the development of new,
adapted to modern conditions, technical means of identifying sources of fake news, aggressive
rhetoric, and provocative calls for unauthorized actions are necessary measures to neutralize
digital threats.
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Social and psychological factors are important for the spread of fakes. Most of the fake
news in social media usually contains manipulative content and is aimed at people who take
information emotionally without proper analysis and verification. Emotional perception of in-
formation, especially of a negative nature, makes critical analysis impossible, so a person's
ability to recognize fake news is low [3]. In addition, the credibility of news on social networks
cannot be verified manually due to the large volume of information and its rapid spreading.
However, false content has certain characteristics, such as informal thinking, use of abbrevia-
tions, transfer of less information, negative tone of messages, etc. [4]. The detected features
make it possible to develop quite effective methods of computer analysis of news messages and
automated detection of fakes. In particular, artificial intelligence technologies are widely used
for this purpose [5-7].

To increase the efficiency of the classification of information materials, modern machine
learning models take into account contextual and syntactic information, as well as the visual
representation that accompanies news [8-10]. However, the accuracy of machine learning
models significantly depends on the gquantitative and qualitative characteristics of the data sets
used to train the models. Most available datasets are only suitable for training English-language
NLP models. Therefore, the effectiveness of the application of various machine learning mod-
els for the automatic analysis of information flows and the detection of fake messages in the
Ukrainian and Russian languages is studied in the work. Special attention is focused on ways
to improve the accuracy of the classification of news materials. Taking into account the re-
vealed correlation between fake and aggressive messages [11], we have suggested expanding
the feature vector of classification models with information of an emotional nature.

2. Methods and means of implementation

Text data sets with news related to full-scale Russian aggression were used for the con-
struction of NLP models and their implementation. Data sets were formed in cooperation with
specialists of the Faculty of Journalism of Ivan Franko Lviv National University in the period
from June to December 2022. The text data were divided into two classes: fake and true news.
In total, 1615 and 1458 messages in Ukrainian and Russian have been analyzed, respectively.
Since the amount of misinformation was slightly higher, the training sampling was balanced by
reducing the number of fake news due to their random exclusion from the data sets. Besides,
the texts were classified as aggressive or neutral messages, which was used as an additional
parameter to improve the effectiveness of detecting fakes.

The proposed models for the classification of text information were implemented in ac-
cordance with the algorithm, which is shown in Fig. 1. The developed analytical system makes
it possible to download news materials obtained from various sources: publications in electron-
ic media, messages on social networks, etc. At the initial stage, the text is divided into tokens
[12]. After the stemming procedure and exclusion of punctuation marks and stop words, the
resulting array of words was used for further analysis. Vectorization of the text was carried out
using the statistical indicator Term Frequency — Inverse Document Frequency (TF-IDF),
which reflects not only the frequency of its appearance but the importance of the word in the
text [13]. In addition, a search for each word from the received array was carried out in Ukrain-
ian and Russian tonality dictionaries [14-16] to determine the tone of the news messages. Ad-
ditional features for binary classification of news were the number of positive and negative
words, the aggressiveness and tone of the message, and the total number of words in the text.
As a result, we obtained the extended TF—IDF* vector. The next step of the fake detection algo-
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rithm is the implementation of machine learning methods using test data sets. The naive Bayes
classifier, support vector machines (SVM), k-nearest neighbor (KNN) algorithm, random forest
and logistic regression methods were used in the work. The final stage of the proposed algo-
rithm is the evaluation of the model's effectiveness.
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Fig. 1. The algorithm for detecting fakes in text messages.

The Python 3.9 language and the Jupyter Notebook environment were used to create the
software modules. The machine learning models in the Python language were implemented
using the Scikit-learn library. The library provides a wide range of tools for data preparation,
dimensionality reduction, classification, regression, clustering, and other machine-learning
tasks, including algorithms for model evaluation.

3. Results and discussion

Classified news materials were used to train the machine learning models proposed in the
work and to evaluate the effectiveness of the developed analytical system in detecting fakes.
We analyzed news in Ukrainian and Russian languages both separately and together. The set of
classified text data was divided into training and test samples in the ratio of 80 and 20%, re-
spectively. The trained models were used to classify a test sample of news messages. Usually,
the results of solving a binary classification problem are marked as positive or negative, that is,
correctly or incorrectly classified instances. These solutions are visually represented in the
form of a confusion matrix [17]. Here, class O relates to fake and class 1 to neutral messages.
The obtained reports on the effectiveness of the models are shown in Fig. 2 — Fig. 6.
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Fig. 2. Confusion matrices (a) and fake news detection report (b) using naive Bayes classification.

Various metrics of classification efficiency are calculated based on the confusion matrix

and its values:

« accuracy, which measures the ratio of relevant instances to the total number of instances
accuracy = (TP + TN) /(TP + TN + FP + FN),

where TP and FP are the numbers of correctly and incorrectly classified instances of the posi-
tive class, TN and FN are the numbers of correctly and incorrectly classified instances of the
negative class, respectively;
« precision, which determines the ratio of relevant instances of the positive class to the to-

tal instances of the positive class

precision = TP / (TP + FP);
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« recall, which determines the ratio of relevant instances of the positive class to the total

number of truly positive instances
recall =TP /(TP + FN);

 F1-score, as a metric of consistency between precision and recall, which demonstrates
how many instances are correctly predicted by the model and how many true instances the
model will not miss

F1-score = 2 * (precision * recall) / (precision + recall).
F1-score shows a generalized assessment of the model's effectiveness.
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Fig. 3. Confusion matrices (a) and fake news detection report (b) using SVM classification.

The analysis of the obtained results allows us to conclude that classical methods of ma-
chine learning recognize fake messages in Ukrainian and Russian languages with satisfactory
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effectiveness. However, quantitative and qualitative indicators of training text data sets are
extremely important for machine and deep learning models. This is probably the reason for the
higher effectiveness of detecting fakes in the Russian language than in Ukrainian by all applied
metrics for most of the used methods. In particular, the biggest difference between F1-score
values was for the naive Bayes classifier. The least influence of the training data language on
the effectiveness of the detection of fake messages was observed for the logistic regression
method.
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Fig. 4. Confusion matrices (a) and fake news detection report (b) using KNN classification.

Combining training data sets in Ukrainian and Russian languages does not significantly
affect the effectiveness of recognition of fake news. The values of the F1-score almost do not
differ from those for the Ukrainian-language models. On the other hand, combining the data
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sets makes it possible to simplify the process of automated classification of textual information
because it does not require an additional procedure for recognizing the language of the news
message.
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Fig. 5. Confusion matrices (a) and fake news detection report (b) using random forest classification.

The application of feature engineering, namely the addition of new features related to the
sentiment analysis of the news message to the TF—IDF vector, makes it possible to improve the
effectiveness of fake detection by various machine learning models. An increase in the values
of precision, recall, F1-score and accuracy was observed for almost all the proposed models.
The results of assessing the effectiveness of recognition of fake news according to the accuracy
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metric are shown in Table 1. However, the model trained on the UA sampling that uses the
KNN algorithm and TF-IDF* vector demonstrates a decrease in the accuracy of the message
classification. The detected decrease in the effectiveness of recognizing fakes is probably due
to the small size of the UA sampling on the one hand and the poorly chosen distance metric on

the other hand.
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Fig. 6. Confusion matrices (a) and fake news detection report (b) using logistic regression classification.

The most significant progress in the automated classification of text messages due to the
proposed extension of the feature vector was observed for the RU sampling (see Table 1). We
associate this with a stronger correlation between fake messages and aggressive rhetoric in
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Russian-language news than in Ukrainian-language ones. In particular, the values of the linear
correlation coefficient between misinformation and aggression were 0.6 and 0.8 for the UA and
RU samplings, respectively [11].

Table 1. Accuracy of machine learning models for fake news detection.

Accuracy, %
Method UA sampling RU sampling UA+RU sampling
TF-IDF | TF-IDF* | TF-IDF | TF-IDF* | TF-IDF | TF-IDF*

Naive Bayes 81 84 91 96 81 83

SVM 83 87 89 99 86 92

KNN 82 75 86 91 79 81

Random Forest 77 82 82 97 79 85

Logistic regres- 86 87 88 99 87 92
sion

In general, the SVM and logistic regression methods demonstrate the best classification
results of news messages in Ukrainian and Russian languages related to Russian aggression.
After taking into account additional features, in particular, the number of positive and negative
words, the tone of the text, and the presence of aggressive rhetoric in the message, the accuracy
of the classification of the UA+RU sampling is 92%.

4. Conclusions

The analytical system proposed in the work can process Ukrainian and Russian texts and
automatically detect fake news. The analysis of news messages in electronic media and social
networks related to the full-scale Russian invasion of Ukraine was carried out using naive
Bayes classifier, SVM, KNN, logistic regression and random forest methods. The effectiveness
of various machine learning models in the classification of information materials was com-
pared.

It has been established that feature engineering makes it possible to increase the accuracy
of detecting fake news by 2-6 % for machine learning models trained on the UA+RU sam-
pling. In particular, after adding to the feature vector the word number in the message number
of positive and negative words, the text tone, and the aggression presence, the classification
accuracy can reach 92%. The SVM and logistic regression methods demonstrate the best re-
sults of text message classification. The lowest effectiveness of detecting fake news in the
Ukrainian and Russian languages was in the KNN method.
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BUKOPUCTAHHS IH)KEHEPII O3HAK Y MOJIEJISIX MAILIMHHOI'O
HABYAHHS /U1 BUSBJEHHS ®EMKOBUX HOBUH
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igor.olenych@Inu.edu.ua

Crpimke 30ibIIeHHS 00cATy iHGOPMaLiHHUX ITOTOKIB, IHTEpHET-HOBHUH 1 IOBIJOMJICHB y CO-
LiaJIbHUX Mepe)ax CTBOPIOE HOBI BUKJIMKH IS CYCIIUIBCTBA 1 MOTpeOy€e CydacHUX IHCTPYMEHTIB
JUISL CTPYKTYpH3alil Ta aHamizy iHpopMaIlii B pexXuMi pealbHOTO 4acy, a TAKOXX BU3HAYCHHS 11
JIOCTOBIpHOCTI. BaxuuBicTh mpoTuii aesingopmarii Ta 3ade3neucHHs iHGOpMaIHHOT Oe3neKn
3HAYHO 3pOCIIa 3 MOYAaTKOM MOBHOMACIITAOHOTO POCIHCHKOr0 BTOPTHEHHs B YKpaiHny. Tomy po3-
poOka HOBHX, IPUCTOCOBAHUX JI0 CYYaCHHX YMOB TEXHIYHUX 3ac001B BUSBICHHS JKepeld QerKo-
BUX HOBHUH Ta arpecHBHOI PUTOPUKH € HEOOXITHUMH 3aX0JaMH il HeHTpamizaii nnppoBux 3a-
rpo3.

VY po6oTi 3anmponoHOBaHO MoOJENi Kiachdikaiii TekcToBoi iH(popMarlii YKpaiHCHKOIW Ta po-
CIFICBKOI0 MOBaMH JUIsl BUSIBIICHHS ()eHKOBUX IOBiIOMIICHB. [IJIs1 HAaBUaHHS Ta TECTYyBaHHS PO3pO-
OJIeHHX MOZeJell MaTMHHOTO HaBYaHHA OyJI0 BUKOpHCTaHO Halip i3 moHan 4000 HOBUH B €NIEKT-
poHHUX 3aco0ax MacoBoi iH(opMmamii Ta COIiaJbHUX MEpexax, OB’ S3aHUX 13 MOBHOMACIITAO0-
HOIO pOCIHCBKOIO arpeciero. Ha ocHOBI aHai3y HOBUHHHUX ITOBiJOMJICHB 32 JOTIOMOTOI0 HAaiBHOTO
Kinacudikaropa Baiieca Ta METOIIB OMOPHHUX BEKTOPIB, K-HalOMmK4InX cycimis, JOricTHYHOT pe-
rpecii Ta BUIIJKOBOTO JIiCYy MOPIBHSAHO e(eKTUBHICTH Kinacudikanii iHGopMaliiHuX MartepiaiiB
PI3HMMH MOJEIISIMH MaIIMHHOTO HaB4yaHHA. OCOOJMBY yBary 30Cepe/DKEHO Ha ILIIXaxX ITiJBH-
mieHHS e()eKTHBHOCTI Kiacudikaiii HOBUHHUX MarepianiB. BpaxoByroUH BUSBICHY KOPEJISIIiIO
MDK (PeHKOBUMH Ta arpeCHBHHMHU IOBITOMJICHHSMH, 3aIlIPOIIOHOBAHO PO3IIMPHUTH BEKTOpP O3HAK
knacugikamiftHux Mozenel iHopmariero eMouifHOTO Xapakrepy. 30KpeMa, BEeKTOp O3HaK, OJie-
pKaHWiA 3a TOMMOMOTOI0 CTaTUCTUYHOTO TMOKa3HWKa 1erm Frequency — Inverse Document Fre-
quency (TF-IDF), 6yB momoBHEHHII JaHUMH MPO HASBHICTH arpeCHBHOI PUTOPUKH Y MOBITOM-
JIEHHI Ta Horo o0CsT, 3HAYSHHSAM TOHAIBHOCTI TEKCTY Ta KUIBKICTIO TO3UTHBHUX 1 HETaTHBHUX
CIiB.

BcraHoBIeHO, 110 iHXKEHEpis 03HAK Ja€ 3MOTY MiJBUIIUTH TOYHICTH BHUSBICHHS (DEHKOBHUX
HOBUH Ha 2—6 % 1y MoJieniell MalllMHHOTO HaBYaHHs, HABYSHUX Ha BHUOIpLI MOBIJOMIIEHb YKpa-
THCBKOIO Ta POCIiiiCbKOI0 MOBaMH. MeTOAM OMOPHHUX BEKTOPIB i JIOTiCTHYHOI perpecii J1eMOH-
CTPYIOTh HalKpaIlli pe3ynbTaTy Kiacuikarii TekcToBoi iHpopmarii.

Knrouoei cnoea: KOMIT'IOTEpHHI aHAJ3 TEKCTY, BUSABICHHS (elikiB, MallMHHE HaBYAaHHS, 1H-
JKEHEPis O3HaK.

Cmamms naditiuina 0o peoxoneeii 29.10.2023
Iputinama oo opyxy 24.11.2023
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