ISSN 2224-087X. Enexrponika Ta indopmaniiini Texxosorii. 2023. Bumyck 21. C. 90-107
Electronics and information technologies. 2023. Issue 21. P. 90-107

UDC 004.4 DOI: https://doi.org/10.30970/eli.21.9

OPEN DIRECTIONS IN QUANTUM SOFTWARE STACK: FROM
NISQ to QUANTUM UTILITY

M. Tsymbalista, M. Maksymenko, I. Katernyak

Ivan Franko National University of Lviv,
General Tarnavsky Street, 107, 79017 Lviv, Ukraine

ihor.katernyak@Inu.edu.ua

Improvement in Quantum Computing (QC) performance will allow us to solve a wide range
of complex problems that classical computers of today can’t handle. Nowadays we feel closer to
achieving a state of Quantum Utility (QU) than ever before. Importance for both academia and
business to understand the current state of technology and tooling, their extensibility points along
with perspective optimization algorithms are on the verge. The purpose of the article is to provide
a structured analysis of existing progress in QC. It serves a purpose of a guide on where
significant progress is expected in the upcoming years, outlines details about tooling to start doing
experiments, and introduces Quantum Computing Optimisation Middleware (QCOM) reference
architecture as a backbone around which new building blocks are expected to be added in the
upcoming years e.g. industry-specific enterprise connectors. The article reviews only the software
stack, not considering opportunities for hardware as they seem to be much further away. This
should help scientists and engineers to define a mental model of how to move forward to reach
both mid and long-term goals toward QU.

Keywords: quantum computing, quantum utility, quantum algorithm performance, Quantum
Computing Optimisation Middleware, error correction, qubit mapping.

Abbreviations
QC - Quantum Computing
QS - Quantum Supremacy
QA - Quantum Algorithm
QU - Quantum Utility
QH - Quantum Hardware
ML - Machine Learning
RC - Random Circuit
PF - Programming Framework
API - Application Programming Interface
SDK - Software Development Kit
QCOM - Quantum Computing Optimisation Middleware
QPU - Quantum Processing Unit
NISQ - Noisy Intermediate Scale Quantum
HPC - High-Performance Computing
IR - Intermediate Representation
SDK - Software Development Kit

© Tsymbalista M., Maksymenko M., Katernyak I., 2023

https://doi.org/10.30970/eli.21.
mailto:ihor.katernyak@lnu.edu.ua

M. Tsymbalista, M. Maksymenko, I. Katernyak 91
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

Overview

QC domain which includes hardware, software, tools, algorithms, etc. is usually
perceived as more complex in comparison to classical technology. The knowledge base for the
domain is limited and is mostly driven by research studies and technical documents of a few
tools that were created by leaders of the industry. The next breakthrough in QC is going to
happen at the intersection of algorithms (not high-level algorithms for solving specific
problems from let’s say physics domain, but algorithms on the compilation level of quantum
computing stack) and existing tools (programming languages, software libraries or
compilators). These programming languages and compilers have knowledge instilled of how to
manipulate physical qubits on specific hardware, translate them to virtual ones, perform error
correction and expose a high-level interface that hides most of the complexity to allow efficient
implementation of QAs.

There is a number of publications around the basics of quantum computing and tools [1],
publications that get under the hood of what is happening during compilation [2], studies of the
performance of different compilers along with details of the tool that allow the combination of
compilation steps from different vendors [3]. Also, studies that show optimization algorithms
for circuit mapping [20], improvement of error correction [16], etc.

Despite all that, it is hard to make a conclusion on how to contribute to progress on
promising directions and approaches to achieve Quantum Utility (QU), a term coined by in
[29] to characterise practicality of modern quantum processing units (QPUs). Details of
technological interfaces in tools around which performance optimizations could be tried are not
summarized. The same for compilation layer phases with details of potential optimization
benefits along with nascent algorithms of each phase that could contribute to breakthrough.

The purpose of the study is to analyze the current state of the industry and outline the
most recent challenges and opportunities ascending in the field from the software perspective.
This should help researchers and software developers to get a better feeling about potential
ways of moving closer to what is called QU.

Methodology

Paper utilizes methods from qualitative research. Analysis of the most recent studies that
have been conducted over the course of three years, to draw a picture of existing QC eco-
system state and potential points of breakthrough. Also, an interview has been conducted with
the co-founder of Haiqu [33] - Mykola Maksymenko [34] who helped to distil the course of
thinking about the most recent challenges in QC, and provided guidance on tooling along with
approaches that could be used to measure the performance of experiments in the space.

From Quantum Supremacy to Quantum Advantage and Utility.

These concepts are similar, but the difference is important to grasp. In 2019 Google
claimed that they’ve achieved QS [4]. Even though calculation had no practical value it layed
the beginning of what is called QS - the ability to solve a problem (even with no practical
value) in a reasonable time frame, in contrast to classical computer architecture that would take
infinity to produce a result. In 2023 IBM released a research [6] on simulating the 127-spin
random Ising model which has a near-term practical potential in providing new physical
insights to non-equilibrium dynamics of the underlying quantum state.

Quantum advantage is a very close neighbor of QS drawing a separation between “not
practical” and “measured practical success” or ‘“breakthrough innovation” over the most
powerful computer in a particular domain e.g. physics, or drug discovery. While being far from

https://www.haiqu.ai/
https://www.linkedin.com/in/mykola-maksymenko-4448a839/

92 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

providing practical utility recent experiments provide insights and outlook for near-term
developments in NISQ era.

Measuring improvement in performance in quantum compilation

As NISQ devices are prone to errors and imperfections it is vital to optimize near-term
Quantum Algorithms for performance by minimizing the number of operations and adjusting
algorithm execution to a particular hardware specification. To this end, Quantum Compilation
tools are already a vital component of a near-term software stack.

Quantum compilation encompasses phases like converting a QA into gate instructions,
mapping and routing qubits on architectures with connectivity constraints, optimizing circuits,
translating gates into a hardware's native gate set, and scheduling quantum operations on
physical hardware. Among these, circuit optimization plays a crucial role in the compilation
process. There are several baseline metrics that are a cornerstone for measuring the
performance of algorithms. The first set of metrics is the Compression Ratio (CR) for the

number of gates and gate depth:
gate count (stage m)

CR(gate count,g € G) = ,

gate count (stage M)

@
gate depth (stage m)

CR(gate depth,g € G) =
gate depth (smge“m)

CR (1) measures a decrease in circuit size before and after circuit optimization. Only a
specific gate class is considered (G); g is a gate that belongs to G gate class; gate count refers
to the number of individual quantum gates required to execute a specific QA or circuit; gate
dept refers to the total number of sequential layers of quantum gates required to implement a
specific algorithm or circuit; stagein, Stageout input and output circles respectively. A gate
layer is a collection of gates that can be executed in parallel, meaning all gates within a layer
are applied simultaneously.

One of the most important metrics is Circuit Cost Function (C):

C=-DlogK-> logF*-> logF*, 2
i i

where C - circuit cost, D - circuit depth, K - a factor that penalizes deep circuits, F** - fidelity
of single-qubit gates, szq - fidelity of two-qubit gates. Fidelity quantifies how closely the

output state of the gate matches the expected or ideal state. The expression inside log in
formula (2) might be understood as an aggregate fidelity of the complete circuit, presuming
that the fidelity of a series of quantum gates can be expressed as the product of the individual
gate fidelities. Details about the fidelities of particular gates could be taken from public
resources shared by vendors. The parameter K penalizes circuits with higher depth. It is
physical interpretation tied to the practical challenges and limitations of implementing longer
quantum circuits, where higher gate depths can lead to increased susceptibility to errors. This
formula is quite simplified and in case there is interest to explore more details of what else
could impact the cost model, please refer to study [3] which provides more details. Also, there
are ongoing studies on how to create neural-network-based approximators that predict

M. Tsymbalista, M. Maksymenko, I. Katernyak 93
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21
hardware-specific noise levels for a quantum circuit [21]. Summarized values for gate fidelities
and parameter K could be found in [3].

Circuit cost function improvement (ratio) is defined as:

C().s't(stage .)
. m
Cost improvement =

, ®)

Cos!(stageﬁm)

where proportion divides Circuit Cost Function for input and output circles respectively.

Another metric is related to the concept of random circuits. This concept refers to
sequences of quantum gates that are applied to qubits in a random or pseudo-random manner. It
was introduced for research purposes because the most promising algorithms are out of reach
in today's NISQ era. RC is defined by gate sets and probabilities assigned to gate type. So the
metric is named: a quantitative measure of the density of a particular gate class G and is
notated as (p)

ge(G)

p(geEG) = , (4)

c
8 total

where gc is gate count for the gates of class G, (Ciwtal — total gate count. The effectiveness of
circuit compression is closely linked to the selection of the gate set and the density of two-qubit
gates within random circuits. Circuit Equivalence Verification aims to determine if two
quantum circuits perform the same quantum computation, producing identical outcomes for all
possible input states. It is very important in the field of optimizations. It is defined by
calculating classical fidelity between two probability distributions:

jdz E pin(0)p(1ur(0)) (5)

ce (0,1}

where p;,(5) P, (0) :|\|/in,0ut (<5)|2 are the probability distributions of measured bitstrings (&),

W, (0) - denote the 2V dimensional state vector of optimized N-qubit circuits. Summation

in (5) is performed over all bitstrings ¢ of length N, that enumerate components of the state
vector. A bitstring is a sequence of binary digits, where each digit is a "bit" representing a
binary value of either 0 or 1. Despite classical, it is also relevant to QC.

Study [3] relies heavily on the metrics outlined above. They automated them in their
Automated Benchmarking Platform for Quantum Compilers. It is strongly encouraged to learn
how to use the tool and get a feel of how different compilers perform distinct stages. It could
serve as a baseline verification tool when brainstorming ideas and researching new
optimization algorithms. Authors also introduce a very interesting approach of combining
subroutines from different modules in a specific way in order to achieve better results, the
extension of this idea is presented in a recent work by Quetschlich [30, 31]. It should also be a
must-do thing to investigate when analyzing the platform and approach.

How to approach initial attempts of QC performance improvement. Extensibility of
compilation pipelines.

In recent years, the progress in QC has led to the emergence of various tools for quantum
development, encompassing standalone simulators, SDKSs, programming languages, etc. A very

94 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

nice intro and comparison of capabilities are provided in the study [1]. Given the differences in
their approaches, target applications, and underlying platforms, understanding the nature of
these tools is essential for harnessing the computational potential of QAs efficiently and
seamlessly. Most of them are used for application-level algorithms implementation using a pre-
defined set of compilation phases that handle the whole compilation process and execution on
real hardware.

In order to experiment with performance improvement of algorithms we need to get under
the hood of compilation and customize different steps. As it is in every opinionated framework
or tool, those choices are limited, but they significantly reduce overhead and allow to
implement hypotheses quickly without a need to build a new compiler from scratch. From the
other perspective it not going to work for more complex experiments. It is vital to provide a
quick overview of some popular tools.

Qiskit Terra. Transpiler provides extensibility points with its Transpiler Passes and Pass
Manager [14]. The package allow us to write new transpiler passes (circuit transformations)
and combine them with different existing passes, handling their order. The whole pipeline
operates under the orchestrator (PassManager). It is responsible for communication between
stages (passes) and their scheduling. It is worth mentioning various optimization levels
provided through pre-defined pass managers that reflect additional complexity of compilation
pipeline. There are optimization levels 0 to 3. The higher the number, the more optimized
circuit will be generated. This number depends very much on actual hardware and of course on
the algorithm.

e Level 0: Simply associate the circuit with the backend, without explicit optimization
apart from any optimizations performed by the mapper.

e Level 1: Performs circuit mapping and additionally conducts minor optimizations by
combining neighboring gates.

e Level 2: Moderate optimization is employed, incorporating a noise-responsive
arrangement and a gate-cancellation process relying on gate commutation
correlations.

e Level 3: Extensive optimization is implemented, encompassing previous stages and
including the resynthesis of two-qubit gate blocks within the circuit.

There is a number of frameworks and tools that extend capabilities and quality of Qiskit
compilation tools. For example, Fire Opal (one of the leading commercial product in quantum
optimizations space) employs Qiskit's preset pass manager with optimization level 3 as its
foundation and showcases consistent improvement of the result vs out-of-the-box optimization.

Qiskit Pulse API [22]. It is a pulse-level quantum SDK. This level allows more control
when programming QH. Achieving optimal QH performance necessitates instantaneous pulse-
level instructions. Pulse delivers precisely that, empowering scientists to define experiment
dynamics with precise timing. This SDK is particularly influential in enhancing error
mitigation methodologies. A very insightful study of how Pulse API can be leveraged is
provided in reference [19]. In this study, they utilized the Pulse API to practically evaluate
numerically optimized error-robust pulses for implementing single-qubit gates on IBM's cloud-
based quantum computers. The general concept of how API works is that arbitrary time-
ordered signals (instructions) are provided as input, concurrently scheduled across multiple

https://q-ctrl.com/fire-opal

M. Tsymbalista, M. Maksymenko, I. Katernyak 95
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

virtual hardware or simulator resources (channels). The system also facilitates the user in
reconstructing the time dynamics of the measured output.

Q# compiler extensions [23]. For those, closer to the Microsoft eco-system, custom
compilation steps allow us to extend and customize the Q# compilation process similar to the
Qiskit Transpiler approach. Similar to any compiler, the Q# compiler follows a sequence of
compilation stages. The initial steps involve parsing and validating the Q# code, and generating
a data structure that captures the compilation's state. Subsequent stages traverse this data
structure to generate updated versions. These stages often involve tasks like simple
optimizations, constant folding, loop unrolling, as well as function and operation inlining. With
custom compilation steps there is a possibility to get into the pipeline of execution, so custom,
more complex optimizations could be done.

This is not an extensive list of the tools with plugin points, but they are sufficient to start
trying custom optimization approaches.

Quantum Computing Optimisation Middleware

Most of the studies today look at the QC process from the perspective of layered
architecture which has been inspired by the OSI networking model [10]. Since 2012 things
have changed in the field and today reasoning about QC algorithm solely from this perspective
doesn’t provide detailed visibility of internals.

Q-CTRL pioneered the term “Quantum infrastructure software” [11] which they sell as a
complex solution comparable to VMware, Citrix, and similar complex virtualization
technologies in classical computing. These systems are heavier. The purposes of those systems
are different for quantum and classical computing. Virtualization is a layer over the operating
system in cases where a hypervisor is used. In QC this layer is not present, so middleware
seems to be a better word to reason about the concept. QCOM (Fig. 1) is a better term to
describe a software layer that is responsible for the performance optimization of arbitrary QAs.
It shouldn’t serve the purpose of doing commodity compilation/transpilation which is done via
proxy QC PF, but focus on enriching its capability, serving as a vitamin for researchers of
QAs, to allow them to solve real-world problems with QC. It should be able to do optimization
on both logical-level circuits and hardware circuits. The circuit processing in QC can basically
be split into logical (higher-level theoretical computation) and physical (lower-level physical
implementation) levels. A circuit at the logical level is defined using abstract, discrete-time
gates and classical computations executed in real time. This is transformed by a compiler into a
circuit at the physical level, where quantum operations are realized using continuous, time-
varying signals adhering to specific timing constraints. There is still an uncertain question of
whether proprietary compilers could allow for sufficient flexibility in the long run, so
potentially QCOM could be responsible for compilation until both product segments will
mature and have better, more standardized interfaces between each other.

QCOM could be exposed as a package plugin for different QC libraries, which calls a
complex optimization layer running in the cloud. This software layer will be driving the
industry in the upcoming decade. It will be called one way or another, but there will be dozens
of companies working on it in some form, leveraging techniques from HPC, ML, and more
classical QAs until the point of reaching QU where this component could grow into something
else like let’s say native to QH firmware.

96 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

Legend

1
uses
1

Enterprise O
could use Integration
|

con"enor -

Logical circuit

| Tl o) Error
~—-—-leverages-——~ gical correcti
reductions W o Vendor O
| driven

software
layer for

efficient use

<
e S Embedding O of QH

accesses (to physlcal 1
L qubit graph |

builds == === == === —=-— oo mmmmoo (OptimizationC)\" -

S

~ 7

=)

‘ module ‘

Bl e e Physical Circuit
" Crossplatfor O -
m adoption

——
Machine O
Instructions ‘

correction
cross-
cutting

] Error O
(concern

\)
—

1
execution results for error correction

Fig 1. Conceptual architecture of QCOM and its interactions with different QC tools, external
components, and hardware.

Logical reductions. Refer to techniques or processes used to simplify or transform a
quantum circuit or logical expression into a more concise or manageable form while preserving
its computational equivalence or logic. These reductions aim to make quantum computations
more efficient, understandable, or amenable to analysis. They involve identifying patterns,
redundancies, or equivalent operations within the quantum circuit or algorithm and simplifying
them without changing the final outcome. Logical reductions can encompass various
techniques, such as gate fusion, gate commutation optimization, constant propagation, gate
cancellation, simplification of logical expressions, etc.

M. Tsymbalista, M. Maksymenko, I. Katernyak 97
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

Embedding to physical qubit graph. Embedding to a physical qubit graph often referred to
as qubit mapping or qubit allocation, is a crucial step in QC when running QAs on real
quantum processors. The physical qubit graph represents the connectivity and layout of qubits
on a specific quantum device. In quantum computers, qubits are not always fully connected to
each other due to limitations in hardware design and qubit connectivity. This means that qubits
can only directly interact with certain neighboring qubits, and operations involving non-
adjacent qubits need to be decomposed into sequences of single-qubit and two-qubit gates.

OnOn0
@

(b)
Fig 2. Quantum topology. (a) Ibm_perth. (b) Ibmq_guadalupe.

Given the restricted interconnections among physical qubits in current quantum devices
as outlined on Fig. 2, identifying an initial quantum graph that accommodates all double qubit
gates across the entire circuit is commonly considered challenging. Consequently, the
requirement for mapping algorithms and optimization approaches arises to overcome this
limitation and identify the optimal arrangement of physical qubits. This process might
necessitate the introduction of extra qubit gates to offset the deficiency in connectivity.
Fig. 3 (a, b) outlines how circuit could be modified in the way that outcome representation is
equivalent. Quantum circuits could be represented with a gate dependency graph as outlined in
Fig. 3 (¢).

qo & q0 & e

qu q o e
Fa NS n

72 — D 92 o—

go g2 g3 g2 go g3
g3 D 73 —b e
g1 g1
(a) (b) (c)

Fig. 3. Different equivalent representations of quantum circuits. (a) Example of a quantum circuit. (b).

98 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

The circuit is modified by interchanging the order of commuting gates. (c) Gate dependency graph.

Here's how the embedding process works:

e Logical Qubits: The QA is formulated in terms of logical qubits, which represent the
quantum information being processed.

e Physical Qubits: The quantum device has a specific layout of qubits with certain
connectivity constraints. The embedding process involves finding a mapping between
logical qubits and available physical qubits on the device.

e Connectivity Constraints: The mapping needs to respect the connectivity constraints
of the device. If two logical qubits interact in the algorithm, but they are not directly
connected to the device, additional gates need to be added to create an equivalent
circuit that can be executed on the hardware.

e Gate Decomposition: If the algorithm involves gates between non-adjacent qubits,
these gates need to be decomposed into a series of single-qubit and two-qubit gates
that can be executed on the available physical qubits.

e Optimization: The embedding process often involves optimization techniques to
minimize the additional gates, preserve the QA's logical behavior, and mitigate the
impact of noise and errors.

e Performance Considerations: The quality of the embedding can impact the overall
performance of the QA, affecting factors such as gate fidelity, execution time, and
error rates.

There are a lot of opportunities at the current level. For example, the paper [20] uses the
circuit template matching optimization method which accounts for connectivity constraints of
different topologies. Method satisfies those constraints by cutting the number of gates. The
impressive thing about it is that it outperforms Qiskit across not only one but various IBM
hardware architectures. It could serve as a baseline for further research in the direction that
could incorporate more complex algorithms. Another family of approaches relies heavily on
ML. Authors in the study [30] prove that it is possible for ML systems to learn based on
historical data as there are many circuits executed on QH every day. These techniques are
closer to cloud vendors which could instill that as part of their policy. Study [20] leverages a
deep reinforcement learning approach that doesn’t rely on batches of historical data but could
learn along the way. Reinforcement learning techniques strive to acquire an action policy that
dictates the appropriate action to take based on specific observations of the current state. The
goal is to maximize a cumulative reward function. Within the proposed framework,
observations are derived by extracting specific attributes from the quantum circuits at each
state. Furthermore, a sparsely defined reward function is employed to indicate the achievement
of a final state and subsequently assess the "quality" of the resulting circuit. This assessment
could pertain to factors such as the resulting gate count, circuit depth, or anticipated fidelity.

Paper [9] concentrates on the problem of qubit routing leveraging a new decomposition
approach based on the capabilities provided by integer programming, which also shows
positive intermediate results. Qubit mapping focuses on the logical-to-physical qubit
assignment, ensuring that the quantum circuit's logical qubits are placed on available physical
qubits. Qubit routing, on the other hand, involves determining the pathways that qubit states
will take as they move through the hardware during gate operations.

M. Tsymbalista, M. Maksymenko, I. Katernyak 99
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

Embedding to a physical qubit graph is a critical challenge in QC, especially for near-
term devices with limited qubit connectivity. Effective embedding strategies are necessary to
successfully run QAs on real hardware and bridge the gap between theoretical algorithms and
practical execution on quantum processors. Research in that direction has been booming over
the last couple of years with a lot of studies that use different approaches, so it is expected that
its going to have a near-term impact on reaching the state of QU.

Optimizations. This is a layer that is responsible for the optimization and simplification of
quantum circuits, particularly for near-term quantum devices with limited resources and high
error rates. Some of the techniques that could be used:

e N-Qubit Blocks Clustering. This refers to the grouping or clustering of multiple
adjacent or non-adjacent qubits that interact together in a quantum circuit. Clustering
qubits that frequently interact in the circuit can reduce the need for repeated qubit
swaps or additional gates, which can help mitigate errors and improve circuit
performance. By optimizing the arrangement of qubits based on their interaction
patterns, joint n-qubit blocks clustering aims to enhance the efficiency of quantum
computations.

e 1-Qubit Optimization. This involves optimizing and simplifying the operations
applied to individual qubits (1-qubit gates) within a quantum circuit. By minimizing
the number of gates or finding gate sequences that are more robust against errors, 1-
qubit optimization aims to improve the overall quality of the circuit. Effective 1-qubit
optimization techniques can lead to more reliable quantum computations, especially
on noisy devices.

e Blocks Consolidation. Refers to the process of identifying sequences of gates that can
be combined or condensed into more efficient operations. By identifying patterns or
sequences of gates that can be optimized, blocks consolidation reduces the overall
gate count and complexity of the circuit. This can result in faster execution times and
reduced susceptibility to errors.

These concepts collectively contribute to making quantum circuits more suitable for
execution on near-term quantum hardware. They address challenges posed by limited qubit
connectivity and noise. The goal is to create more compact, efficient circuits that can be
executed with higher fidelity on currently available quantum processors.

Error correction cross-cutting concern. In traditional software architecture, the cross-
cutting concern is referred to a specific aspect of software that spans several logical layers of
an application (logging, authentication, .etc). In QC error correction techniques are applied on
every layer of program compilation and even as part of post-processing after QA execution, so
it is a good candidate to be considered as one of the most important cross-cutting concerns of
quantum software architecture.

Noise and errors in QH are one of the core challenges that arise due to the delicate nature
of quantum systems and the influence of their surrounding environment. Before diving into the
details of how they could be handled it is important to understand why they are happening in
the first place. The main causes are:

100 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

e Decoherence: Occurs when qubits, sensitive to environmental interactions like
temperature fluctuations, lose their delicate quantum states and coherence, resulting in
mixed quantum information and computational errors.

e Quantum gate imperfections: Arise from challenges in precisely implementing
quantum gates due to factors like imperfect qubit interactions, fluctuating control
parameters, and variations in qubit properties, leading to errors in quantum operations.

e Crosstalk in quantum processors: occurs when closely positioned qubits interact,
resulting in an unintended coupling that disrupts desired individual qubit operations
and introduces errors.

e Gate duration and speed: are crucial to prevent error accumulation; while executing
gates too quickly can introduce errors from imperfect control and noise, implementing
them too slowly can also lead to errors due to increased susceptibility to decoherence
during the operation.

e Readout errors: stem from imperfections in measurement devices, signal
amplification, and hardware components, resulting in inaccuracies when determining
the final state of a qubit.

e Error Correction Overhead: Necessitates extra qubits and operations for encoding,
detecting, and correcting errors, which in turn can introduce noise and errors,
potentially impacting computational efficiency.

e Qubit Imperfections: arise from manufacturing processes and material flaws, resulting
in variations in properties like energy levels, transition frequencies, and coupling
strengths.

Considering that there are a lot of factors that cause errors it is worth summarising what
strategies could be considered to deal with them:
1. Error Suppression. Techniques aimed to prevent errors from happening. They reduce

the likelihood of hardware error while quantum bits are being manipulated or used for
memory storage. It leverages the nature of quantum control. More details could be
found in a study [16]. Also, ML could help to increase the robustness of quantum
gates [17]. Other strategies are described in [18] [19]. Most of the studies are done by
the Q-CTRL team. The assumption is that they use those approaches as part of their
commercial product FireOpal. This strategy is not effective for problems like “Energy
Relaxation”.

2. Error Mitigation. Errors could happen during algorithms execution and also while
measuring output. Various approaches have been devised to address them, aiming to
enhance outcomes through postprocessing. These strategies encompass diverse
methods such as randomized compiling, measurement-error mitigation, zero-noise
extrapolation, and probabilistic error cancellation, yet they exhibit shared
implementation principles. In general, error mitigation strategies entail running
numerous slightly varied iterations of a target algorithm and subsequently combining
outcomes. The adjustments made to the circuit can either be randomized or follow a
predetermined algorithm. Some form of this is used in a leading product of Q-CTRL -

M. Tsymbalista, M. Maksymenko, I. Katernyak 101
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

FireOpal. But due to the high costs of running algorithms several times, for the time
being, it is a less effective strategy in comparison to Error Suppression strategies.

3. Quantum Error Correction. This strategy entails the creation of algorithms that are
aimed to identify and fix errors. In general, they work by implementing redundancy,
distributing the state of qubits to other qubits. Then by checking helper qubits, it is
identified whether an error happened or not. If yes, the correction could be applied. A
huge disadvantage is the number of qubits that are required. As we all know, the
amount of qubits is very limited in today’s hardware. So as of today, this is not a very
effective technique until better approaches are found. This is a huge opportunity for
“rockstar” researchers. More insights on the approach could be found in [15].

Thorough examinations have revealed that quantum error suppression currently offers the
most compelling demonstrated advantages and optimal adaptability for integration with error
mitigation and quantum error correction, culminating in outcomes that exceed the cumulative
impact of individual components. Details on the success of their combination could be found in
[18].

Cross-platform adoption. Layer that is responsible for building an abstraction over
different hardware implementations. It is more of an enterprise, nice to have feature, so we are
not covering it in the scope of this analysis.

Machine instructions. The translation from quantum gates to pulse-level instructions is a
complex and crucial step in making QAs executable on real hardware. It requires a deep
understanding of the physical properties of the qubits, noise sources, and control mechanisms.
Incorporates the following phases:

e Gates to Pulses (Gate Decomposition). The process begins by translating abstract
quantum gates used in QAs into specific sequences of physical gates that are available
on the QH. These physical gates are then further translated into corresponding time-
varying signals (pulses) that control the behavior of qubits during gate operations.
Translating gates to pulses involves calibration and characterization processes to fine-
tune the parameters of the pulses.

e Timing Resolution. Timing resolution involves determining the precise timing
intervals for applying pulses to qubits during gate operations. High timing resolution
ensures accurate execution of gates, reducing the likelihood of qubits losing their
quantum states due to timing errors.

e Pulse Optimization. Pulse optimization focuses on finding the optimal pulse shapes,
durations, and timings to achieve desired gate operations. Optimization techniques,
often involving classical computations, are used to minimize errors and improve gate
fidelity by shaping the pulses in ways that mitigate noise and imperfections in the
hardware.

e Control Flow Optimization. Involves enhancing the sequence of quantum operations
(quantum gates) within a quantum circuit to optimize its execution efficiency and
mitigate errors. Quantum control flow refers to the ordering of quantum gates and the
management of quantum states as they evolve through the circuit. Optimizing control
flow in quantum computing aims to improve gate fidelity, reduce decoherence effects,

102 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

and enhance the overall performance of quantum algorithms. Gate fusion, gate
reordering, optimal control sequences, etc. are some of the examples of techniques
used on this level.

This integrated process ensures that QAs are translated into executable instructions that
account for physical hardware constraints, timing precision, pulse optimization, and control
flow considerations. The goal is to maximize the reliability and efficiency of quantum
computations on real quantum processors.

As part of this chapter comprehensive overview has been provided of steps that should be
considered when building custom QCOM for both commercial and scientific purposes. In the
next chapter, we will talk more about tooling, that allows us to implement those fine-grained
manipulations.

Tooling to get into the aggressive scientific research of QC optimization. The
backbone for building QCOM.

Continuing the discussion of extensibility, none of the tools have good support for
developing next-phase technology for QC. Despite some extensibility points, they don’t offer
enough control of QH and algorithms execution. Interaction only on the gates level abstraction
doesn’t provide the ability to manage lower-level control sequences with the purpose to do
calibration, error mitigation, and characterization. Therefore, it becomes imperative to possess
the capability to regulate the timing and establish links between quantum instructions and their
corresponding pulse-level executions across different physical implementations or technologies
used to create and manipulate qubits in QC. Timing features are especially important for the
characterization of decoherence, crosstalk [24], dynamical decoupling [25], etc.

All those features are present in OpenQASM (Open Quantum Assembly Language) [26].
As a programming language, it is designed to serve the purpose of intermediate representation
(IR). It is used by upper-tier compilers to interact with QH, enabling the depiction of an
extensive array of quantum operations along with classical feed-forward flow control based on
measurement results. It natively supports abstractions of logical and physical levels via specific
semantics. Control flow instructions can be used to program repeat-until-success algorithms
[27] and magic state distillation protocols [28]. There are also many other examples that show
the potential of OpenQASM to get us closer to QU. Gate modifiers are another important
mechanism that allows the creation of new gates based on existing ones. For example, modifier
for inverting ads more readability which greatly raises optimization opportunities (it is hard to
understand context when gates are decomposed).

Program execution flow (Fig. 4). Specific segments are classical, amenable to writing in
classical programming languages for near-time execution. The quantum program generates a
payload for execution on QPU. This data package encompasses expanded quantum circuits and
external real-time classical functions. External real-time classical functions refer to
computational tasks or functions that are executed using classical computing resources, outside
of the QPU. OpenQASM serves as the language for defining the quantum circuits,
encompassing interface calls to external classical functions. There might be higher-order
elements within the circuit data, subject to optimization prior to generating OpenQASM. An
OpenQASM compiler can modify and optimize all aspects of circuits described through the IR,
including basis gates, qubit mapping, timing, pulses, and control flow. The final physical
circuit along with external functions is then processed by a target code generator to produce

M. Tsymbalista, M. Maksymenko, I. Katernyak 103
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

binaries intended for the QPU. Almost every aspect of program compilation could be
controlled in detail. So as of today, OpenQASM can be considered a core tool for hard-core
research of QC optimization and as a backbone for QCOM implementation.

Application

~

OpenQASM Circuits + extern functions]

i
Logical OpenQASM Circuit

OpenQASM Compilation

-

Basis Gate Translation
Program Physical Qubit Mapping extern Function
{Near-Time) Circuit Optimization Compilation
Timing Resolution
Pulse Optimization
Control Flow Optimization

Physical OpenQASM Circuit

Machine Target Code Generation
. A

Controller Binaries

Compiler

Quantum Program

£ G Global Controller :
I v '
= :
g g ; Local Controller 1 Local Centroller ... Local Controller N :
390 :
Fig. 4 [26]. The compilation and execution model of a quantum program,
and OpenQASM’s place in the flow.
Conclusion

This paper draws a picture of the current state of QC, looking into the most recent
challenges and opportunities ascending in the field from the software perspective. QCOM
conceptual architecture is proposed as an implementation backbone for optimization software
spanning different layers of QA execution from trivial gate optimizations to more complex
layout matching, manipulations on the machine-level instructions, and error correction. The
motivation behind optimization on each layer is described along with interesting techniques
that in combination increase the performance of the most popular tools like Qiskit. Analyses
helped to identify priority directions for future research efforts, based on the recent progress in

104 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

the industry, along with tools that could help to reach better control of quantum circuits
execution. The proposed QCOM reference architecture aims to streamline the implementation
of experiments and hypothesis testing in the field.

As the next steps in the research, prioritized directions that crystalized during this phase
could be tackled: “Embedding to physical qubit graph” and “Error correction” (on both circuit
and hardware layers). They showed a significant level of opportunity to reach QU in the
nearest years. Covered optimization routines in different combinations could be implemented
based on QCOM architecture, using OpenQASM programming language, and benchmarked
using the Arline Benchmarks [32] tool to measure performance increase in comparison to well-
established tools like Qiskit, etc. This will help to reason about how far we are from reaching
QU and what could be done to get closer to it.

References.

[1] Himanshu Sahu, Hari Prabhat Gupta. Quantum Computing Toolkit from Nuts and Bolts
to Sack of Tools. 2023

[2] Marco Maronese, Lorenzo Moro, Lorenzo Rocutto, Enrico Prati. Quantum Compiling.
2021

[3] Y. Kharkov, A. lvanova, E. Mikhantiev, A. Kotelnikov. Arline Benchmarks. Automated
Benchmarking Platform for Quantum Compilers. 2022

[4] Google Claims a Quantum Breakthrough That Could Change Computing. Retrieved from
https://www.nytimes.com/2019/10/23/technology/quantum-computing-google.html

[5] What is quantum supremacy? Retrieved from
https://www.techtarget.com/searchsecurity/definition/quantum-supremacy

[6] Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout van den Berg,
Sami Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, Abhinav
Kandala. Evidence for the utility of quantum computing before fault tolerance. 2023

[71 Why quantum ‘utility’ should replace quantum advantage. Retrieved from
https://techcrunch.com/2021/11/11/why-gquantum-utility-should-replace-quantum-
advantage/

[8] What Is NISQ Quantum Computing? Retrieved from
https://thequantuminsider.com/2023/03/13/what-is-nisg-guantum-computing/

[9] FEriedrich Wagner, Andreas Bdrmann, Frauke Liers, Markus Weissenbdck. Improving
Quantum Computation by Optimized Qubit Routing. 2023

[10] N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim,
Thaddeus D. Ladd, Yoshihisa Yamamoto. Layered architecture for quantum computing.
2012

[11] Quantum infrastructure software. Retrieved from https://g-ctrl.com/topics/quantum-
infrastructure-software

[12] Differentiating quantum error correction, suppression, and mitigation. Retrieved from
https://g-ctrl.com/topics/differentiating-guantum-error-correction-suppression-and-
mitigation

[13] A. Paler, L. M. Sasu, A.-C. Florea, R. Andonie. Machine learning optimization of
quantum circuit layouts, ACM Transactions on Quantum Computing. 2022

https://github.com/ArlineQ/arline_benchmarks
https://arxiv.org/search/quant-ph?searchtype=author&query=Sahu%2C+H
https://arxiv.org/search/quant-ph?searchtype=author&query=Gupta%2C+H+P
https://arxiv.org/search/quant-ph?searchtype=author&query=Maronese%2C+M
https://arxiv.org/search/quant-ph?searchtype=author&query=Moro%2C+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Rocutto%2C+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Prati%2C+E
https://arxiv.org/search/quant-ph?searchtype=author&query=Kharkov%2C+Y
https://arxiv.org/search/quant-ph?searchtype=author&query=Ivanova%2C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Mikhantiev%2C+E
https://arxiv.org/search/quant-ph?searchtype=author&query=Kotelnikov%2C+A
https://www.nytimes.com/2019/10/23/technology/quantum-computing-google.html
https://www.techtarget.com/searchsecurity/definition/quantum-supremacy
https://techcrunch.com/2021/11/11/why-quantum-utility-should-replace-quantum-advantage/
https://techcrunch.com/2021/11/11/why-quantum-utility-should-replace-quantum-advantage/
https://thequantuminsider.com/2023/03/13/what-is-nisq-quantum-computing/
https://arxiv.org/search/quant-ph?searchtype=author&query=Wagner%2C+F
https://arxiv.org/search/quant-ph?searchtype=author&query=B%C3%A4rmann%2C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Liers%2C+F
https://arxiv.org/search/quant-ph?searchtype=author&query=Weissenb%C3%A4ck%2C+M
https://q-ctrl.com/topics/quantum-infrastructure-software
https://q-ctrl.com/topics/quantum-infrastructure-software
https://q-ctrl.com/topics/differentiating-quantum-error-correction-suppression-and-mitigation
https://q-ctrl.com/topics/differentiating-quantum-error-correction-suppression-and-mitigation

M. Tsymbalista, M. Maksymenko, I. Katernyak 105
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

[14] Transpiler Passes and Pass Manager. Retrieved from
https://qiskit.org/documentation/tutorials/circuits_advanced/04_transpiler_passes and_pa
ssmanager.html

[15] Quantum error correction. Retrieved from https://g-ctrl.com/topics/quantum-error-
correction

[16] Harrison Ball, Michael J. Biercuk, Andre Carvalho, Jiayin Chen, Michael Hush,
Leonardo A. De Castro, Li Li, Per J. Liebermann, Harry J. Slatyer, Claire Edmunds,
Virginia Frey, Cornelius Hempel, Alistair Milne. Software tools for quantum control:
Improving quantum computer performance through noise and error suppression. 2020.

[17] Yuval Baum, Mirko Amico, Sean Howell, Michael Hush, Maggie Liuzzi, Pranav
Mundada, Thomas Merkh, Andre R. R. Carvalho, Michael J. Biercuk. Experimental Deep
Reinforcement Learning for Error-Robust Gateset Design on a Superconducting Quantum
Computer. 2021.

[18] Pranav S. Mundada, Aaron Barbosa, Smarak Maity, Yulun Wang, T. M. Stace, Thomas
Merkh, Felicity Nielson, Andre R. R. Carvalho, Michael Hush, Michael J. Biercuk, Yuval
Baum. Experimental benchmarking of an automated deterministic error suppression
workflow for quantum algorithms. 2022

[19] Andre R. R. Carvalho, Harrison Ball, Michael J. Biercuk, Michael R. Hush, Felix
Thomsen. Error-robust quantum logic optimization using a cloud quantum computer
interface. 2020

[20] Xiaofeng Gao, Zhijin Guan, Shiguang Feng, Yibo Jiang. Quantum Circuit Template
Matching Optimization Method for Constrained Connectivity. 2023

[21] Alexander Zlokapa, Alexandru Gheorghiu. A deep learning model for noise prediction on
near-term quantum devices. 2020

[22] Pulse. Retrieved from https://qgiskit.org/documentation/apidoc/pulse.html
[23] Extending the Q# Compiler. Retrieved from
https://devblogs.microsoft.com/gsharp/extending-the-g-compiler/

[24] J. M. Gambetta, A. D. Cércoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M. Chow, C.
A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, Mark B. Ketchen, M. Steffen. Characterization
of addressability by simultaneous randomized benchmarking. Physical Review Letters
109, 24. 2012

[25] L. Viola, E. Knill, S. Lloyd. Dynamical decoupling of open quantum systems. Physical
Review Letters 82, 12. 1999

[26] OpenQASM Live Specification. Retrieved from https://opengasm.com/intro.html#scope

[27] A. Paetznick, K. M. Svore. Repeat-Until-Success: Non-deterministic decomposition of
single-qubit unitaries. Quantum Information & Computation 14, 15-16. 2014

[28] S. Brawyi, A. Kitaev. Universal quantum computation with ideal Clifford gates and noisy
ancillas. Physical Review A 71, 2. 2005

[29] Nils Herrmann, Daanish Arya, Florian Preis, Stefan Prestel. Quantum utility -- definition
and assessment of a practical quantum advantage. 2023

[30] Nils Quetschlich, Lukas Burgholzer, Robert Wille. Predicting Good Quantum Circuit
Compilation Options. 2023

https://qiskit.org/documentation/tutorials/circuits_advanced/04_transpiler_passes_and_passmanager.html
https://qiskit.org/documentation/tutorials/circuits_advanced/04_transpiler_passes_and_passmanager.html
https://q-ctrl.com/topics/quantum-error-correction
https://q-ctrl.com/topics/quantum-error-correction
https://qiskit.org/documentation/apidoc/pulse.html
https://devblogs.microsoft.com/qsharp/extending-the-q-compiler/
https://openqasm.com/intro.html#scope

106 M. Tsymbalista, M. Maksymenko, 1. Katernyak
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

[31] MQT Predictor: Automatic Prediction of Good Compilation Paths. Retrieved from
https://github.com/cda-tum/mqt-predictor

[32] Arline Benchmarks. Retrieved from https://github.com/ArlineQ/arline_benchmarks
[33] Haiqu. Retrieved from_https://www.haiqu.ai/

[34] Mykola Maksymenko LinkedIn profile. Retrieved from
https://www.linkedin.com/in/mykola-maksymenko-4448a839/

BIAKPHUTI HAIIPSIMU B CTEKY KBAHTOBOTI'O IPOTPAMHOI'O
3ABE3NEYEHHSI: BIJI NISQ 10 KBAHTOBOi KOPUCHOCTI

M. Humbaaicra, M. Makcumenko, I. Katepusik

Jlveiecokutl nayionanvruil yHieepcumem imeni leana Opanka,
eyn. I'en. Tapnascvroco, 107, 79017 Jlveie, Yxpaina

ihor.katernyak@Inu.edu.ua

IMokpamenHss npoxyKTUBHOCTI kBaHTOBHX oOuucieHb (QC) mO3BONUTE HaM BHPILIyBaTH
IIMPOKHUH CIIEKTP CKJIQMHHUX INPOOJIeM, 3 SKUMU KIaCH4YHI KOMIT'IOTEPH CHOTOJIHI HE MOXYTh
Bropatucsi. ChorofgHi MU BigdyBaeMo cebe OMKYMMH 10 IOCATHEHHS CTaHy KBaHTOBOL
xopucHocti (QU), HixX Oyap-Kouu panime. Sk i akaaeMidyHuX Kijd, Tak i A1 Gi3Hecy BaXKIHBO
PO3YMITH TOTOYHHI CTaH TEXHOJOTIH Ta IHCTPYMEHTIB, TOYKM IX pO3IIHUPEHHS pa3oM 3
aNropuTMaMH ONTUMi3alii. MeTol CcTaTTi € HagaTH CTPYKTYpPOBaHHMH aHali3 iCHYHOUYOTO
mporpecy B cdepi KBaHTOBHX 00uKciIeHb. BoHa ciyrye HOBIIHMKOM IIONO TOTO, JI€ OWiKYETHCS
3HAYHUI Mporpec y HaWOMIDKYi POKH, ONMHUCYE JETalli 1HCTPYMEHTIB Ul TOYaTKy HpPOBEICHHS
EKCIIepUMEHTIB i MIPE/ICTABIISE ETAIOHHY apXiTekTypy IIpomixknoro IIporpamuoro 3abe3neyeHHs
Onrtumizanii KsantoBux O6uuciens (QCOM) sk OCHOBY, HaBKOJNO SIKOI B HACTYIHI POKH
OUiKYIOTBCSl HOBI Oy/iBeNnbHI OJIOKH, HAIPUKIIAJ, KOPIOPATHUBHI 3’€JHYBaYi JUIs EBHHUX Tally3eil.
VY cTaTTi pO3rAgacThCs JIMIIE CTEK MPOTrPaMHOTO 3a0e3NeyeHHs], He BPaxOBYIOYH MOXKIHMBOCTI
amapaTHOTO, OCKUTBKHA BOHU HE BUTJLNAIOTH PEaliCTUYHMMHU Ha ChOTOAHI. Bee me y xoMOinarii
Ma€ JJOTIOMOTTH BUEHHM Ta iHKE€HepaM BH3HAUHTH PO3YMOBY MOJEIb TOTO, SIK PyXaTHCs BIEpes,
100 JOCATTH SIK CEpeTHBOCTPOKOBHX, TaK i JOBFOCTPOKOBHX IiJICH II0/I0 KBAHTOBOT KOPHUCHOCTI
(QU).

lamy3p KkBaHTOBHX OO4YHMCIEHb, sKa BKJIOYae amapaTHe 3abe3leueHHs, IporpamHe
3a0e3MeYeHHs], IHCTPYMEHTH, AITOPUTMH TOIIO, AY)KE CKIaJHa B MOPIBHSHHI 3 TpaauiliiHUMHU
obGuncnenHsmu. basza 3HaHp 1 ramy3i oOMexeHa i B OCHOBHOMY 0a3yeThCs Ha JOCIIDKEHHSX i
TeXHIYHI} TOKyMeHTalii KUIbKOX IHCTPYMEHTIB, CTBOPEHHX JiJepamMu raiysi. Hactynuuii npopus
Yy KBaHTOBHX OOYHCIICHHAX CTaHEThCS Ha MEPETHHI aJrOPUTMIB (HE aITOPUTMIB BUCOKOTO PiBHS
JUTS BUPIIIEHHS] KOHKPETHUX Mpo0ieM, CKaXiMo, y Taly3i (i3UKH, a aJrOPUTMIB Ha PiBHI CTEKy
KOMITUIAII KBaHTOBUX OOYHCIIEHB) Ta iCHYIOYHX IHCTPYMEHTIB (MOB MpOTpaMyBaHHSA, 0i0IioTeK
porpaMHOro 3abe3mnedeHHs abo kommiasTopiB). Lli MOBH TporpamMyBaHHS Ta KOMIUISTOPH
MaloTh 3HAaHHS MPO Te, SK MaHimy oBaTH (i3MYHUMHU KyOiTaMM Ha HEBHOMY AarapaTHOMY
3a0e3MeueHHi, NepeBOJUTH X Yy BipTyasbHi, BUKOHYBAaTH BHIIPABJICHHS NOMMIIOK 1 HaJaBaT
BHCOKOpIBHEBHI iHTep(eiic, sSKUi MPUXOBYE OLTBIIY YacTHHY CKJIQIHOCTI, 00 3a0e3MmeunTH
e(eKTHBHY peai3alilo KBaHTOBUX aJITOPHTMIB.

IcHyroTp Xopomn myOmikamii Mpo OCHOBHM KBAaHTOBHX OOYHCIIEHb Ta iHCTpyMeHTH [l1],
myOumikamii mpo Te, MO BiIOyBae€ThCA Wil Yac KOMMUIAMI [2], JOCHIIKEHHS MPOAYKTHBHOCTI
PI3HUX KOMIUIATOPIB Pa3oM i3 JEeTalsIMH IHCTPYMEHTY, SIKHH IIO3BOJIIE KOMOIHYyBaTH KpPOKH
KOMIUIAMii Bif pisHMX BUpoOHHKIB [3]. KpiM TOro, mOCHiIKeHHS, SKi TOKa3yHTh AlTOPUTMHU

https://github.com/cda-tum/mqt-predictor
https://github.com/ArlineQ/arline_benchmarks
https://www.haiqu.ai/
https://www.linkedin.com/in/mykola-maksymenko-4448a839/
mailto:ihor.katernyak@lnu.edu.ua

M. Tsymbalista, M. Maksymenko, I. Katernyak 107
ISSN 2224-087X. Electronics and information technologies. 2023. Issue 21

ontuMizanii posmonimy KyOitiB [20], MOKpaIieHHs BHIpABICHHS HNOMIWIOK [16], Tormo.
HesBaxkaroun Ha I1e, Ba)KKO 3pOOHTH BHCHOBOK IIPO T€, SIK HMIIXOIUTH IPOTPEC y MepCIeKTHBHIX
HampsIMKax 1 MiAXoAax s JOCSATHEHHS KBaHTOBOI KopucHocti. [lerami iHTepdeiiciB B
IHCTpYMEHTaX, HAaBKOJO SKHX MOXHa CHOpoOyBaTH ONTHMI3yBaTd MPOXYyKTHBHICTb, HeE
migcyMoBytoThesi. Te came A eramiB piBHSA KOMIUIALIT 3 JETajdbHOK iH(GOpMALIEI PO
MOTEHLIHHI MepeBard OonTuMi3amii KOKHOI (a3u, pa3oM 3 aIroOpUTMaMH, sIKi MOXKYTh CHPHUSATH
TIPOPHBY.

JlocnikeHHsT 3MaNbOBY€e KapTUHY MOTOYHOTO CTAaHy KBAaHTOBHUX OOYHCIICHB, PO3TIILIaloun
Cy4JacHI BHKIMKH Ta MOJJIMBOCTI, IO BHHHKAIOTh y Tally3i 3 TOYKH 30pYy HPOrPaMHOIO
3abe3neycHHs. KonnentyansHa apxitekrypa QCOM TpOINOHYeThCs SK OCHOBAa peaizaii
IIPOTPaMHOTO 3a0e3NeYeHHsl Ul ONTHUMI3allil, 110 OXOIUTIOE Pi3Hi PiBHI BUKOHAHHS KBAaHTOBOTO
QITOPUTMY BiJ TpPUBIAJBHOI ONTHMIi3alil BOPIT [0 OUTBII CKIAAHOTO 3ICTABICHHS KyOiTiB,
BUNPABICHHS MMOMWIOK 1 MaHIMyJAMiA 3 IHCTPYKLIAMH Ha PiBHI amapaTHOTO 3a0e3MedeHHS.
OnucaHo MOTHBALIIO ONTHMi3allii Ha KOKHOMY piBHI Pa3oM i3 LIKaBUMH TEXHIKaMH, SKi B
MOEAHAHHI MOJXYTh TMIJIBUIIUTH HPOLYKTUBHICTP HAWHIOMYJIAPHIMIMX iHCTPYMEHTIB, TaKHX SK
Qiskit. AHani3 JONOMIT BH3HAYUTH NMPIOPUTETHI HANMPSIMKH MalOyTHIX JOCIIUKEHb Ha OCHOBI
HEUIOaBHEOTO NPOTrpecy B Taly3i, a TaKoX IHCTPYMEHTH, SIKI MOIIM O JOIIOMOITH JOCSTTH
KpaIIoro KOHTPOJIO 32 BUKOHAHHSAM aJITOPUTMIB. 3allpOIIOHOBaHa eTaloHHa apxitekTrypa QCOM
CIpsIMOBaHa Ha CIIPOLICHHS peai3allil eKCIIepUMEHTIB 1 HepeBiPKH TilloTe3 y raiysi.

Knrouosi crnosa: KBaHTOBI 0OYHCIIEHHS, KBAHTOBA KOPUCHICTh, MPOAYKTHBHICTh KBAHTOBOTO
anmroputMmy, Ilpomikae Ilporpamue 3abesmeuenHs mis Ontumizanii KeanroBux OOGuuciens,
BUNPABJICHHS TOMUIIOK, PO3MOILT KyOiTiB.

Cmamms naoitiuia do pedaxyii 8.03.2023
Ipuiinama oo opyky 15.03.2023

