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Considered: Neural network-based algorithms to obtain an optimal digital filter. Recurrent
neural networks can be used to implement an adaptive digital filter considering the characteristics
of both interference and useful signal. The developed program trains recurrent neural networks
and as a result obtains the coefficients of recursive digital filters. The efficiency of the proposed
algorithm is confirmed with numerical experiments results.
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1. Introduction

To select an optimal digital filter, profound knowledge in the theory of digital filtering
and methods of adaptive digital filtering is required. Often, one needs to implement an optimal
filter using the known interference characteristics and technical requirements of the device and
without delving into the theory of filtering. For example, such can be the filtering a sensor
signal from a human ear to a mobile phone in order to select the optimal level of radiation
power or filtering signals for gesture detection [1]. The simplest case of Kalman filter — under
an unknown value of the motion level, to iteratively select the value of the filter coefficients.
Such a case can be implemented by training a recurrent neural network.

A typical example — obtaining an optimal filter considering the disturbances — a linear
Kalman filter. Figure 1 shows a recurrent neural network that makes it possible to obtain
optimal values of the coefficients of such a digital filter.
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Fig.1. The structure of a recurrent neural network for implementation a linear Kalman filter

To obtain the optimal coefficients, it is enough to train a neural network on a multiple of
training pairs that are sets of training pairs — each pair consists of a real noisy signal and a
known signal without noise. Moreover, one can avoid researching the noise characteristics and
just train a large number of training pairs in different measurement modes for a specific task
and a specific device. If adaptation to new operating conditions is necessary, it is enough to
retrain the neural network.

In general, the simplest structure of a recurrent neural network (Fig. 2) can be used to
implement recursive filters with an arbitrary number of coefficients:

out(k) =W, (0) - x(k) +W, (1) - x(k 1) +...+W, (m) - x(k —m) +
W, (0)-Out(k —1) ~W, (1) - Out(k — 2) —... W, (n—1)-Out(k —1—n) @

Out (k)

* out(k —n—1)

Fig. 2. The structure of a neural network for implementing a recursive filter with an arbitrary number of
coefficients
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To test this approach, model input signals were generated, to which noise with a Gaussian
distribution with the zero mathematical expectation was added. The network was trained from
random initial values of the weights using the gradient method with a variable learning rate.

2. Results
Model signal (3) was chosen to test the efficiency of this approach
X(t) =sin(0.2-t) + &(t) 3)

where &£(t) is a disturbance with a Gaussian distribution and zero mathematical expectation

and dispersion equal to a unit.
The appearance of the signal with and without noise is shown in Fig. 3 with a sampling

step At=0.04.
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Fig. 3. The appearance of the signal with and without noise. Green — input signal; red — signal with noise

The change in the values of the weights during the training process is shown in Figure 4.
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Fig.4. The change in the values of the weights during the training process. Green — W, ; red — W,
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The final values of the weights after training: W, =0.038, W, =0.962 . Note that the total
value of the weights is equal to a unit, as in the standard filtering formulas for the simplest

linear Kalman filter [2-4]. As a result of training, the resulting digital filter reduces the mean
square value of the noise component by five K, ~5. The appearance of the signal after

filtering and the signal without noise is shown in Figure 5.
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Fig. 5. The appearance of the signal after filtering. Green — input signal; blue — signal after filtering

Note that during the training process, the optimal values of the weights are established
quite quickly that is in several tens of training epochs. (Fig. 4).

Important: a neural network can adapt its parameters during operation but, which is
natural, only under the desired input signal. Fig. 6 shows how a neural network adapts from
random initial values of the weights to improve the filtering quality.

0 25 50 75 100 125 150 175 200
time

Fig. 6. Dynamics of neural network tuning. Red — signal with noise; green — input signal; blue — signal
after filtering

The filter obtained in this way can be used in a certain frequency range of the harmonic
signal. Set a multiple of training pairs from the desired working area and train the network,
after which it behaves like a low-pass filter. A transmission coefficient constant and close to a
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unit is desirable for the operating range of high-frequency interference filtering for a useful
harmonic signal.

Fig. 7 shows the frequency response of the filter obtained as a result of network training

with the following initial values: sampling frequency 1000 (Hz), signal frequency for training

pairs - 10 and 100 (Hz), root mean square noise value of training pairs sign=1.0

A

(¢

1 . . .
==, where A is the amplitude of the harmonic signal, o - root mean

input

(SNR =

input
square deviation of the noise of the input signal.)

The process of training yields an uneven frequency response (Fig. 7), but the network
filtering properties remain unchanged and they reduce the noise level by approximately three
times for all frequencies that satisfy the Nyquist theorem at a given sampling frequency (in this
case, for frequencies no higher than 500 Hz).

To accomplish the research, specify the desired SNR value for the training and the results
of filtering of the trained network under the other SNR values of the signals to be filtered.
Table 1 shows the results of the research.
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Fig. 7. The frequency response of the trained neural network

Table 1. Filtering degree

Ne SNR Input SNR Output SNR Input/ SNR Output
1 0.67 1.0 15

2 0.33 0.67 2

3 0.17 0.6 35

4 0.083 0.54 6.5

5 0.056 0.67 12

Table 1 shows that increasing the noise of the multiple of training signals (reducing the
SNR for the multiple of training signals) improves the filtering degree. At the same time, the
frequency response of the received filter changes significantly in the operating range. Figure 8
shows the frequency response for cases 1(a) and 4(b) and 5(c) from Table 1.



Z. Liubun, V. Nesterenko, V. Mandziy, O. Karpin 53
ISSN 2224-087X. Enekrponika Ta indopmauiitai Texrosnorii. 2022. Bumyck 19

Amplitude-Frequency Characteristic Amplitude-Frequency Characteristic Amplitude-Frequency Characteristic

03+
2

0 @ 6 80 100 18 o 160 0 a0 80 100 1o 160 160 0 4 60 60 10 120 M0 160
1 o,

Fig. 8. The frequency response of the filter at different SNR values from Table 1

Fig. 8.c shows that along with good filtering, the level of the useful signal at the output of
the filter is small and the practical usage of such a filter is problematic. Moreover, the phase
shift between the input and output signals of the filter increases. One more positive property of
the obtained filter deserves mentioning — if the noise level of the signal during the operation of
the filter is smaller than for signals from the training multiple, then the filtering quality is
higher. For example, for Case 4 from Table 1, the training was carried out with a root mean
square value of noise of 2.0, then in the case of reducing the root mean square value of noise
by half, the increase in the SNR reaches 10.

It is obvious that the shape of the useful signal is different for different tasks. Therefore, it

is important to understand how the resulting filter will behave with different types of useful
signal that differs from the signal on which the network was trained. In particular, often during
the operation of the devices, signal changes due to temperature drift. [11, p.18] Therefore, it is
logical to investigate whether the received filter will provide the required level of filtering or
whether it must be adapted to such a change in the signal.

In the case of filtering the sensor signal of the distance of a human ear to a mobile phone in
order to select the optimal level of radiation power, it is logical to check the ability of the
received filter to work in the case of a thermal drift of zero or a change in the distance to the
user. To do this, a triangular signal (Figure 9) that simulates a linear change of the signal and a
change in the constant level of the signal was sent onto the network trained on the harmonic
signal.

The filter obtained by training the network on a harmonic signal (Fig. 9) provides noise
filtering only qualitatively repeating the linear change of the useful signal. Therefore, it is
logical to train a neural network basing on a linearly variable noisy signal and then check the
quality of the received filter for other types of signals including harmonic signals.

Figure 10 shows the test results for this case — the test signal from Fig. 9 becomes the
training signal, and the test signal from Figure 10 serves for the testing.

The filter obtained in this way works successfully both with a triangular and harmonic
signal at the same level of filtering. Let's set a step signal as a variant of the test signal. Fig. 11
shows the results of the research.
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1.25 .

Fig. 9. The results of testing the trained neural network.
Red — test signal; blue — test signal with noise; green — signal after filtering

Fig. 10. The result of the network training for the triangular signal case.
Blue — signal with noise; red — input signal; green — signal after filtering

Fig. 11 shows that the filter successfully reproduces the step signal, significantly reducing
the root mean square value of the noise.

Thus, it can be argued that after training a recurrent neural network on a triangular signal,
a filter is obtained that provides effective filtering for the other types of input signal.
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Fig. 11. The result of testing with a step signal.
Blue — signal with noise; red — input signal; green — signal after filtering

The next stage of research shows how the order of the filter affects the level of filtration,
which will make it possible to obtain an optimal filter.

A noisy triangular signal was used for training, and a stepped signal for testing. The value
of the reduction in the rms value of the noise obtained due to the filtering and rounded to a
whole value is entered in the cells.

Table 2. RMS noise reduction

n m

1 2 3 4 5
1 10/4 6/4 10/5 12/5 11/4
2 12/5 12/5 14/4 9/5 10/4
3 11/4 9/4 13/4 10/5 11/5
4 16/4 13/5 16/4 10/5 11/4
5 15/3 14/4 11/5 12/5 11/5

Table 2 shows the A/B values for each filter option, where A is the reduction of the
variance of the input signal noise without considering the error of determining the values of the
constant level and phase shift of the signal, and B is the total error of reducing the variance of
the input signal noise, considering the error of determining the constant level and the shift
phases.

Increasing "m" and "n" leads to an improvement in noise filtering but slows down the
transition between fixed levels and the accuracy of their determination, in other words, the
filter begins to filter out the useful part of the signal. Moreover, often, with large values of "m"
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and "n", the values of the weights of the neural network corresponding to the filter coefficients
are very small compared to the values of m<3 and n<3. For example, the value of weights at
m=n=3:

W, [0.012,0.006,0.001]

W.[0.492,0.438,0.049]

3. Conclusions

The following conclusions can be drawn on the basis of the conducted research:

1. It is possible to create an optimal filter with the help of the simplest recurrent network
based on the features of the useful signal (an analogue of the known dynamics of movement)
with given interference parameters.

2. A neural network trained on one dynamic is a filter for other types of signals as well.

3. The SNR ratio of the training multiple affects the properties of the resulting filter and
makes it possible to select the best option for a specific task.

4. With the same initial data, as a result of training, for different initial values of the
weights, a whole multiple of neural networks is obtained that satisfy the requirements of
accuracy in the training process.
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VY crarTi HmpencTaBieHo HOBUH MiAXix 10 po3poOku IudpoBHX (iIbTPIiB 3 BUKOPHCTAHHIM
HEHpOHHUX Mepex. [ns HamamryBaHHA (inbTpa BHKOPHCTOBYETHCS MAaTEMaTHYHA MOENb
CUTHaNy, TOOTO TEBHHH YWUCTHH CHTHANI 3 OIyMaMd Ta 0e3 MIyMiB, AKi BigirpaimTh poOJb
TPEHYBAJIBHOTO MPHUKIAAy IJs HefipoHHOI Mepexi. TakuM YHHOM BIA€ThCS MaKCHMAIIBHO
COpPOCTUTH iHTepdeic cucTeMu, MepeKIaBIly BiAMOBIJaIbHICTh 32 BUOIp HAJAIITYyBaHb (ilbTpa
Ha caM nudpoBui GiIBTP.

[Mo6ynoBanuit tndpoBuii GiNETP € peKypEeHTHOIO HEHPOHHOIO MEPEXEI0 3 OTHUM HEHPOHOM.
Sk ¢yHKmito akTBanii OyJio BHKOPHCTaHO JNiHiMHY ¢yHKiiro. Ha Barm HelipoHa HOZAIOTHCS
3HAUeHHs BXIHOTO CUrHaly Ta BindinbTpoBaHoro curHany. HaBesmena y craTti cxema QiabTpy
JTa€ MOXKJIMBICTh TIOOYIOBH Pi3HUX HOTO Bapiamiii 3 pi3HOIO KUTBKICTIO BXiJHUX Ta BHXITHHX Bar.
3anexHo Bix HaOOpY Bar, GUIBTP MO-PI3HOMY pearye Ha CKIaJ0Bi BXiJHOTO CUTHAIY.

Jns TpeHyBaHHS Ta TecTyBaHHS (inbTpa Oyno 0OpaHO CHHYCOINAIBHHNA CHTHAJN, 0 SKOTO
OyJn0 1ONaHO IIYMOBMiI CHUTHaI 3 HOPMAJIbHMM PpO3IOMIIOM 1 HYJBOBHM MaTeMaTHYHHM
crioziBanHsIM. Ha Takomy curnaii Oysio mepeBipeHoO 3aCTOCOBHICTB IM(ppoBOro QiIbTpa, a TaKoK
JIOCTIHKEHO XiJl HABYAHHS 3 BiIMOBITHUM aHATi30M 3MiHH Bar HEWPOHHOT Mepexi. 3aCTOCOBHICTh
¢binpTpa B yMOBaxX HaOMKEHHX JI0 PEAIbHUX OYJIO MepeBipeHO 3 BUKOPUCTAHHIM TPUKYTHOTO Ta
CXOJMHKOBOTO CHTHAJIIB. Bi3yaiizauis BXiIHMX CHTHAIB Ta pe3yJIbTaTiB GUIBTpaLil U1 KOXKHOTO
3 BUNIAJIKIB JIa€ 3MOTY HAOYHO OILIHUTH SAKICTH poOOTH PibTpa.

B sxocTi 00’ekTHBHOI OLiHKN QinbpTpamii Oymo obpano koedimieHT SNR, mo xapakrepusye
BiJHOIIIEHHS aMIUTITYIW CUTHATY IO BEIWYMHU I CTaHAApTHOTO BiAXWIeHHSI. B Xoni aHamizy
OTPUMaHHUX PE3yJBTATIiB OyJI0O OTPUMAaHO AaMILTITYJHO-4aCTOTHY XapaKTepPHCTHKY (inbTpa 3a
pi3HHUX YMOB HaBuaHHs. TakuM YHHOM OYJIO ITOKAa3aHO BIUIMB IIOTY)KHOCTI IIyMY Y BXiTHOMY
CHUTHaJi Ha pe3yNbTaTH QiIbTparii.

Jns peanizarii mudpoBoro ¢inkTpa 3 eIeMEHTaAMH HEHPOHHUX MEpeK OyJI0 BUKOPHCTAHO
MOBY mporpamysanHs Python.

Kniouogi crosa: undposuii GinbTp, peKypcrBHI GUIBTPH, peKypeHTHI HEHPOHHI Mepexi.

Cmamms naoiviwna 0o pedaxyii 10.10.2022.
Ipuiinama oo opyxy 21.10.2022.
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