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The paper represents an approach for developing the edge Al system which is based on the
modern MLOps concept. For the edge hardware part we utilize Nvidia Jetson Nano
microcomputer which provides server side for network requests processing, data storage and
machine learning models of self-deployment. We propose the working MLOps pipeline fully
designed by the industrial software solutions like TensorFlow 2, MIflow, Apache Airflow, which
is integrated into the developed application. The considered pipeline scheme consists of three
operational stages: a) data storage and processing, which stands for fetching the data from
database, cleansing and transformation; b) machine learning modeling with synchronous hyper-
parameters optimization and model registration; ¢) model deployment and serving. The whole
pipeline is wrapped by the REST API created via FastAPI micro-framework and orchestrated
using Apache Airflow service. To implement the described pipeline we chose the time dependant
temperature data to be learned and short-term predicted by the GRU-based recurrent neural
network. The latter one is tuned in terms of hyper-parameters configuration by genetic algorithm
which is embedded into the second stage of the pipeline. Also, a design which combines Nvidia
Jetson Nano server with the inference edge device like STM32 H745 microcontroller via sockets
is discussed.

Key words: edge computing, MLOps, machine learning, MlIflow, genetic algorithm.

Introduction

Despite the active development of Al cloud based solutions, the edge/fog computations
are gaining popularity in many of industrial and academic topics. The reasons for this
phenomenon are comprehensively discussed in publications [1-5], among which we highlight
the autonomy and isolation. Such features of the boundary calculations allow to design and
investigate the productivity and efficiency of hardware and software systems in the local
environment without binding of the paid cloud servers. Quite an important step in the
development of software, in particular, for the edge computing which uses machine learning, is
to build the right automatic pipeline. That pipeline typically includes data ingestion and storage
with the sequential processing, utilization of the machine learning models as well as model
deployment, saving and monitoring stage. Unfortunately, by now there are not many papers
devoted to the edge MLOps technologies. Nevertheless, an interesting example has been
presented in [6], where the authors developed an Edge MLOps framework for automating
machine learning at the edge, enabling continuous model training, deployment, delivery and
monitoring. Also, in [7] the authors proposed the detailed Digital Twin MLOps architecture for
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personalized demand response suggestions based on online short-term energy consumption
prediction.

Since this topic is quite new, in this paper we propose our own MLOps pipeline scheme.
As the main edge device, we use Nvidia Jetson Nano microcomputer with a built-in 128-core
GPU. To implement the MLOps pipeline, we have applied technologies such as SQL.ite for the
data storage; TensorFlow 2 for the machine learning modelling; Mlflow for the model
registration and serving; Apache Airflow for the data fetching — model training — model
deployment orchestration. The complete process, consisting of interaction of these technologies
and steps, is controlled through the REST API, created by the FastAPI micro-framework. As
data for testing our pipeline, we chose the temperature measured in the Laboratory of
Intelligent Autonomous Systems of the Faculty of Electronics and Computer Technologies,
Ivan Franko National University of Lviv, Ukraine. The resulting model (GRU recurrent neural
network) which is able to predict temperature data based on the studied patterns in the previous
measurements and can be easily deployed on STM32 microcontroller via the client-server
sockets [8]. The last step defines more complex twin edge computing system, where Nvidia
Jetson Nano serves as the main computational hub while STM32 microcontroller runs the
inference.

Hardware architecture

The Nvidia Jetson Nano microcomputer (fig. 1), on the basis of which the hub is
implemented, has the following characteristics: 128 cores NVIDIA Maxwell™ GPU, quad-
core ARM® A57 1479 MHz and 4 GB 64-bit LPDDR4 operational memory with a reading
speed of 25.6 gigabytes / second.

Fig. 1. Hardware components: Nvidia Jetson Nano and STM32 H745 microcontroller

This provides sufficient computing resources both to run the web server and to train
simple (single-layer) recurrent neural networks due to the presence of 128 core GPU.

STM32H745 is built on a dual-core circuit (32-bit 480 MHz Cortex-M7 and 240 MHz
Cortex-M4) and has 1 MB of SRAM and 2 MB of flash memory. It is able to work in different
power modes.

The Nvidia Jetson Nano connects to the STM32 H745 microcontroller through a LAN
switch. Also, if needed, the current system can be accessed via global Internet. If there is a
separate Wi-Fi module on the hub, the connection between the microcontroller and the hub is
made directly via an Ethernet network cable without an intermediate switch. To test the
inference made by microcontroller with the deployed model, the temperature sensors, e.g.,
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DS18B20 can be connected. The general hardware scheme of the proposed system is shown in

Internet

fig. 2.
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Fig. 2. Scheme of the hardware connection

Due to the modularity, the proposed hardware system can be easily expanded with the
additional microcontroller equipment and supplemented with more sensors. In addition, access
to the Internet allows one to develop the mobile services to manage the operation of this
system, namely through the creation of mobile applications and integration with other remote
10T components.

Software architecture

The Nvidia Jetson Nano microcomputer runs on Linux4Tegra operating system based on
Ubuntu 18.04 and uses the Nvidia JetPack SDK, which provides access to the CUDA-X
graphics acceleration library. This library provides support for TensorRT and cudaDNN
technologies used in machine learning to develop and train deep neural networks using the
frameworks such as TensorFlow, PyTorch, MxNet and others.

The software implementation of the presented system is based on a two-component
architecture: a) server side for query processing and monitoring the state of the deployed
machine learning model; b) client-microcontroller STM32 H745 which interacts with a running
server using TCP sockets to transfer data and update model files after monitoring its current
state (fig. 3).

Server side of the system is designed using FastAPI [9] micro-framework which is based
on the asynchronous web server Uvicorn. A FastAPl-based API’s binds client requests, which
income to special route functions (MVT pattern), with the event handlers defined by the
functional logic of the developed API. With the use of TCP sockets, the requests are sent and
processed by both server and client (microcontroller STM32 H745).

If data drift is detected, or the specified model accuracy is lost (TF model), the server can
update the neural network model (update_model) deployed on the microcontroller. In turn,
after processing the temperature data coming from the connected sensors (Temperature
Sensorl / 2), the client microcontroller sends these data to the server (send_data) for further
processing and storage in the database. On the server side, such real-time communication is
provided by a bidirectional transport protocol implemented by the sockets supporting library.

In addition to the microcontroller client, this architecture allows one to extend server
users in the context of adding other devices (sending system or data notifications to the smart
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phones, adding other sensors and handlers, etc.) and to scale the proposed system in order to
improve it.
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Fig. 3. Client-server connection

Server side details

For the developing the server the side preference was given to the FastAPI framework.
The choice of the optimal framework among such popular web server design solutions as
Django, Flask, FastAPI, Pyramid was made for the following reasons:

o deployment of the server on the edge computing device with limited computing

resources;

o availability of the comprehensive documentation;

e availability of libraries to expand the functionality and interaction with the STM32

microcontroller;

e support for asynchronous programming, ASGI and the RESTful concept.

At present, testing the performance of these software frameworks demonstrates the
advantage of FastAPl over competitors [10], what is a strong argument in terms of limit
calculations. Also, since machine learning tasks in the context of edge computing may require
significant computational time, it is necessary to ensure the possibility of asynchronous
processing of other requests coming to the server. This is fully implemented by the basic
FastAPI tools and thanks to the simplicity and convenience speeds up the prototyping of
application software interfaces. FastAPl can handle both synchronous and asynchronous
requests and has built-in support for data validation, JSON serialization, authentication and
authorization.

The main architectural template for the design of the server part is the Model-View-
Template (MVT), which covers the developed classes and their structuring in a three-step
pipeline (fig.4-5).

In fig. 4 the conceptual MVT diagram of the application is shown. The MODEL is an
abstraction that defines the object representation of data stored in a SQL.ite database. Such data
are temperatures obtained as a result of measurements. In order to create a fast and working
prototype of the edge system, the data model was limited to one temperature table, but can be
easily supplemented with other objects, such as user classes and climatic indicators, if
necessary. View (VIEW) is the implementation of the interaction of user or internal queries
with the database, which involves performing CRUD (create / read / update / delete) actions
with temperature data and contains calls to basic computational operations from the flowchart
of fig. 5.
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Fig. 4. MVT architecture scheme

The route functions defined in this block are responsible for the following operations:

o predict() predicts the temperature by the model deployed on the server for a given
number of steps;

e run_train() starts the full process of training the neural network model with automatic
selection of hyper-parameters by applying a genetic algorithm and;

e store_temperature() using network socket technology processes a TCP request from
the microcontroller, which contains the processed temperature data, and stores it in the
database;

e deploy() implements the embedding of the prepared neural network model in the
microcontroller through a function call.

The results of routing functions are returned in JSON format, which can be embedded in

the HTML page.

MLOps pipeline

To create a synchronized three-step process of data processing, model training and its
deployment on the server we use the approaches of the modern concept of MLOps, which aims
to flexibly implement experimental machine learning models in the production system. The
need to implement such a process for the proposed system is caused by the constant
accumulation and change of temperature data, on which the trained deployed model depends.
Therefore, the neural network model needs to be retrained and re-adapted to new data while the
system is running without stopping.

The project configuration and local environment settings should be specified in the
corresponding .yaml, .json or .env file.

In fig. 5, it is shown the lifecycle of the deployment workflow. The first component of
data processing and preparation contains the following modules:

e collect_data — implements interaction with the function of the microcontroller to save

the obtained temperature measurements in the database;
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e et _data — contains functions for obtaining data from SQLite, saving intermediate
processed arrays with temperature data in the local directory of the project, which are
used to train neural network models;

e transform — determines the class-handler for normalization, reduction to three-
dimensional tensors (input format for the GRU recurrent neural network) and splitting
of the array of temperature data into training and test samples;

e store_local — saves intermediate three-dimensional temperature arrays (training and
test samples) in the local directory defined in the project configuration file.

| | \ |

. =,
0 U 0)

SQLDB [ E Registration STM32 deploy

FastAPI Web App

Fig. 5. MLOps pipeline

The second component of the fig. 5 consists of the following modules:

e model_train — contains functions for starting training of neural network models and
estimating accuracy, creating models using the TensorFlow 2 and launching the
MIflow service for registration, saving in SQLite (default), tracking versions and
parameters of models;

e hyper_opt — optimizes the hyper-parameters of neural network models, contains a
class for calculating the hyper-parameters of single-layer recurrent and hybrid neural
networks based on the genetic algorithm;

e genetic_opt — file with the implementation of the genetic optimization algorithm
based on the DEAP [11] library;

e experiment — an auxiliary unit consisting of Jupyter Notebook files for conducting
numerical experiments and model research in an interactive mode.

The last component — model deployment and monitoring is responsible for the direct
launch of trained and configured models at the server level, which are ready for use on user
requests. Also, the status of models and new data is monitored, based on which retraining can
take place with subsequent re-deployment. It contains the following modules:

o model_production — deploys the model on the server locally using Miflow Model
technology, a standard format for packaging machine learning models, which can be
used in various tools, such as real-time query service via REST API; saves the model
to local directory in TensoFlow.keras h5 format;
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e model_conversion — converts the model from HDF5 / h5 format to TensorFlow Lite
format, which allows one to transform the model to a C-object and save it to a file
with extension using the Linux command line utility xxd; also at this stage it is
possible to quantize the model using TensorFlow Lite tools;

e model_embedding — embeds the model saved in C-object format in the STM32 H745
microcontroller using the sockets;

e model_observe — monitors the model; Evidently Al tool [] can be used to monitor new
data for data drift and to evaluate the accuracy of model prediction.

The Apache Airflow platform for managing data workflows [13], which are defined by
oriented acyclic graphs (DAG), is used to run each of the system components sequentially.
This allows one to track the performance of each task: data processing and preparation, training
neural network models with subsequent registration by MIflow tools and obtaining the best
model for its deployment both on the local server and on the microcontroller.

To achieve the sequence of the training process of neural network models, a
corresponding DAG file was created, which starts the components and the corresponding
modules from the pipeline in fig. 5. This DAG is triggered by run_train() route function
defined via FastAPI.

In fig. 6, it is shown an acyclic graph scheme for training the models and their
deployment. Each of the tasks defines the nodes of the Airflow graph which are responsible for
running the component items. The next task cannot be started until the previous one is
completed. Thus, Airflow takes care of the integrity and synchronization of the workflow.

Airflow DAG scheme

process_transform train_tune log_prod_model model_deployment

Fig. 6. DAG for running pipeline

Results and discussion

Temperature data (fig. 7) measured in the Laboratory of Intelligent Autonomous Systems
of the Faculty of Electronics and Computer Technologies of the Ivan Franko National
University of Lviv for the period from February 1, 2021 to September 31, 2021 were used to
test the developed prototype system.

Applying the components of pipeline (fig. 5) to the obtained temperatures via running the
DAG (fig. 6) by Apache Airflow server resulted in locally deployed models (fig. 8), which is
demonstrated by MIflow Ul screenshot. The system is able to select the best performed model
among the multiple experiments. Because of the short terms of development, the full
microcontroller deployment process has not been completed yet, but the all preparatory works
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have been done. Therefore,the model_observe module will be complemented as soon as client-
microcontroller connects to the server.

The production-ready model, deployed on the server can be accessed directly via miflow
models serve command from the terminal or via FastAPI API route function. Then, the process
of model embedding into the microcontroller can be invoked.
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During the experiments on Nvidia Jetson Nano we explored the following nuances: 1) the

database SQLite can be easily replaced by more powerful PostgreSQL, because the
computational resources of microcomputer allow that; 2) increasing the number of layers of
recurrent neural network model which has been used for the temperature prediction causes too
significant increase in model size (leads to issue with memory limits on microcontroller); 3)
genetic algorithm for hyper-parameters optimization performs accurately, but lacks of speed
and consumes a lot of computational resources.
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Conclusions and future work

The approach for developing the MLOps pipeline for edge computing devices based on Nvidia
Jetson Nano and STM32 H745 microcontroller is presented. To complete the full exploration
of the presented system we have to link the server side with microcontroller by integrating
trained and optimized models into STM32 H745. Such an end-to-end scheme will be
investigated and discussed in future research. Also, the exploration on asynchronous calls for
CPU bound problem (model training) and 1/O operations performed on the microcomputer will
be of interest in a future work.
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MLOPS MPOTOTHUII CUCTEMHU LITYYHOI'O IHTEJIEKTY AJISI TPAHUYHUX
OBYUCJIEHb

O. CinbkeBny, f1. boiiko, JI. MonacTupcbKuii
Jlveiecokutl nayionanvruil ynieepcumem imeni leana @panka,

eyn. [Ipacomanosa, 50, 79005 Jlveie, Yrpaina
oleh.sinkevych@Inu.edu.ua

VY crarTi NpeAcTaBIeHO MiAXix 10 PO3pOOKH CHCTEMH IITYYHOTO IHTENEKTY, 0 0a3yeThes Ha
cyyacHiit konnenuii MLOpS. Taka cuctema po3pobiieHa B KOHTEKCTiI TPAaHUYHUX OOYHCIEHBb Ta
MIpeACTaBIsiE COOOI0 ammapaTHO-TIPOTPAMHUII KOMIIIEKC, SKHH HE 3aleXHThb Bif JOCTYIy MO
XMapHHX CEpBICIB Ta MOXKE pO3rOpTaTHCs JIOKaabHO. s mepudepiiiHoi anmapaTHOT YaCTHHU MH
BHUKOpPUCTOBYeMO Mikpokomm'toTep Nvidia Jetson Nano, sikuii BHCTymae B SIKOCTI cepBepHOL
YaCTHHH JUII OOpOOKM Mepe)KeBHX 3amuTiB, 30epiraHHs DaHUX I CaMOpPO3TOPTaHHS MOJENeH
MAIIMHHOTO HAaBYaHHs. 3amporoHOBaHO poOouuii koHBeep MLOps, MOBHICTIO po3poOiicHHUN 3
BUKOPHCTAHHSIM TaKHWX IPOMHCIOBUX INporpamHux pimens sik TensorFlow 2, Mlflow, Apache
Airflow. Takuii KOHBeep MOBHICTIO IHTEIPYETHCS y PO3POOJICHHUN MPUKIAIHUN MPOrpaMHHMit
iHTepdeiic. ApXiTeKTypHa cXeMma KOHBEEpa CKIAIAa€TbCcs 3 TPHOX OINEpaliiHUX eTamiB: a)
30epiranHs Ta 0OpOOKH NaHMX, IO O3HAYa€ OTPUMAaHHA NaHWX 3 0a3W JaHUX, OYHMIICHHS Ta iX
MIEPETBOPEHHSI U BUKOPUCTAHHS y IIPOLECi TPEHYBaHHS MOJENi MAIIMHHOTO HABYaHHS —
PEKYpeHTHOI HEHTpOHHOI Mepexi ©O) CTBOpPEHHS MOJeNi 3 CHHXPOHHOIO OINTHMi3alli€ero
rimeprmapaMeTpiB Ta peecTpalli€lo MOJIETI; B) pO3TOPTaHHS Ta OOCIyroByBaHHS MOJENi. YBeCh
kxouBeep obropuytnit REST API, ctBopenum 3a pmomomororo Mikpo-¢peiimBopky FastAPI i
OpraHizoBaHuii 3a JomoMorow ciyx6u Apache Airflow. Jlnst peanizaiii onrcaHOro KOHBEEpa MU
BHOpau TeMIepaTypHi JaHi, sIKi 00poOIsIINCS PEeKypeHTHOI0 HEHPOHHOIO MEPEXEeI0 Ha OCHOBI
GRU, mo 3xiiicHIOE KOPOTKOTEPMIHOBE IPOTHO3YyBaHHs TemmepaTypu. [inmepmapamerpu wmiei
MepexXi MO’KHA ONTHMI3yBaTH 3a JOIOMOTOI0 TEHETUIHOTO aJITOPUTMY, SIKHUH peaizoBy€eThCS ik
yac JIpyroro eramy KOHBeEpa Ta BUKIMKAETHCS MapalelbHO y Tpoleci ii TpeHyBaHHS. Takoxk Ha
OCHOBI TEXHOJIOTII COKETiB HaBeIeHa cXxeMa MpueaHaHHs cepepa Nvidia Jetson Nano 1o iHmoro
TPAaHUYHOTO IIPHUCTPOI0 — MikpokoHTpodepa STM32 H745, mo ciyrye 00’€KTOM pO3ropTaHHS
HaTPEHOBAHOI Ha cepBepi HelpoMepexi.

Kniouosi cnosa: tpaununi obuucnenns, MLOpS, mammune wasuauns, MIflow, renernunnii
aJITOPUTM.
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