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In this paper, we investigated the learning process during an identification of printed digits
from the type of an activation function. The study of the activation function type and the number
of iterations in the learning process of the neural system was carried out using the Fourier spectra
analysis of the learning error function and branching diagrams. For this purpose, a program for
the multilayer neural network was developed in the Python software, which involves setting the
number of hidden layers as well as the number of neurons inside them and changes in the learning
rate. The learning rate was considered as a constant, and its optimal value, where the best learning
rate is observed, was determined. To analyze the learning rate effect on the educational process,
we used a logistic function describing the frequency doubling process. It is shown that the learn-
ing error function is characterized by bifurcation processes leading to a chaotic state when #>0.8.
The optimal learning rate value that determines the emergence of the doubling process of the local
minima number is determined. It was found that the sigmoidal activation function (as compared to
the activation functions ReLU and hyperbolic tangent) best satisfies the learning process of the
three-layer neural network for recognizing digits, given an array of 4x7 zeros and ones. Compared
to other activation functions, there is an insignificant change in the learning error during the tran-
sition from one digit to another. It is shown that an increase in the number of hidden layers does
not lead to a sharp increase during the learning error. An increase in the learning iterations num-
ber is accompanied by the appearance of periodic dependences of the logistic function value of
the learning rate, the period of which is a variable of the number of iterations and the learning
rate. Using Fourier spectra of the error function from the learning rate value, it can be argued that
an increase in the number of iterations leads to an increase in the number of harmonics, which
eventually leads to the appearance of a chaotic state of the neural network.

Keywords: Multilayered neural network, activation function, optimal learning rate, digital
identification.

1. Introduction

It is known [1] that deep learning is a branch of machine learning and is based on appro-
priate algorithms. Deep neural networks are used to solve various problems related to cluster-
ing, approximation and events forecasting, language identification, text processing, and others.
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The classical error backpropagation algorithm works well with two-layer and three-layer neural
networks, however, as the depth of the network is further increased, there may be some prob-
lems [2]. Indeed, as it was pointed out in [3], an increase in both the number of hidden layers
and the number of neurons in them stimulates an increase in the chaotic state of the neural net-
work (NN) learning error versus the epoch number and the learning rate diagram. A chaotic
state, which appears as a result of increasing both the number of hidden layers and the number
of neurons in them, leads to the NN transition into a state, characterized by the learning process
absence. It is especially evident when the number of hidden layers changes. One of the reasons
for such behavior of a neural multilayer network is the so-called gradient decay [2]. During the
error spread from the source layer to the target layer, the current result is multiplied by the ac-
tivation function derivative. Using a traditional sigmoid activation function whose derivative
has a range of fewer than 5 units, the error can be close to zero after running through several
layers. On the contrary, if we take an activation function where the derivative is unbounded
(such as the hyperbolic tangent), there can be an increase in the learning error, leading to un-
stable network learning [4]. Hence, let us consider the type effect (sigmoidal, hyperbolic tan-
gent, ReL.U function), activation function, and number of iterations on the learning process of
the neural system.

2. . ReLU Activation (rectified linear unit)

The activation function ReLU (rectified linear unit) has gained much attention in recent
years. Its derivative is either one or zero, and therefore no gradient expansion or attenuation
can occur. Moreover, the use of this function leads to thinning of the scales. The positive as-
pects of this activation function, according to the paper [1]:

1. Sigmoid and hyperbolic tangent requires a large number of system resources to per-
form operations, such as lifting to a degree, which with a large number of layers and neurons
slows down the learning process, while ReLU can be implemented through a simple threshold
transformation of matrix activity to zero.

2. The use of ReLU significantly increases the convergence speed of stochastic gradient
descent compared to sigmoid and hyperbolic tangents. This is considered to be due to the linear
nature and lack of this function's saturation.

The downsides. Unfortunately, ReLU is not always reliable enough in the learning pro-
cess anyway. For example, a large gradient passing through ReLU may lead to such an update
of the weights that this neuron is never activated again. This problem is solved by choosing the
correct learning rate. Currently, there are several varieties of this function, determined by its
parameters [5]. In particular, in [6], on handwritten digits identification based on mnist and
multilayer neural network, the activation function ReLU was used. It increased the learning
rate of the network compared to sigmoid, and the learning error was less.

In this paper, we will study the effect of the type of activation function and the number of
iterations on the learning process of the neural system by analyzing the Fourier spectra of the
learning error function and branching diagrams. For this purpose, we developed a program for
the multilayer neural network in Python software, which involves setting the number of hidden
layers and the number of neurons in them and changing the learning parameter in the range of
0.001+10. This interval of variation 1 was chosen taking into account the data obtained in [7],
where the study of the learning rate impact on the learning process in the multilayered NN was
conducted. Each layer of this NN will be considered as a separate deterministic system, for
which we investigate the branching diagram using the mapping form function:
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X =N—X, _an’
where n — is a step, 1 — a parameter that determines the learning rate.
Its fixed points:

X, =—1t(m+D"?,
the eigenvalues, which can be calculated as follows:

p =1-2(n+1".

The choice of such a logistic representation is determined by the fact that it describes the
doubling process of the oscillation frequency [8]. In our case, this process is caused by the
emergence of local minima while approaching the global minimum and repeatedly passing
through the global minimum.

3. Results and analysis

Fig. 1 and Fig. 2 show the branching diagrams and Fourier spectra for the activation func-
tions, which are described by the sigmoid and hyperbolic tangents, respectively. The NN had
three layers and 28 neurons in each layer, assuming that the activation function coefficient is
c=1. For the ReLU activation function, if c=1, the learning process was missing.
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Figure 1. Fourier spectra and branching diagrams
for printed digits given by an index of 4x7 zeros and
ones, under the following conditions: hyperbolic
tangent activation function, three hidden layers with
28 neurons per layer, 100 iterations, C=1.

Figure 2. Fourier spectra and branching dia-
grams for printed digits defined by an index of
4x7 zeros and ones, with the following condi-
tions: sigmoidal activation function, three hid-
den layers with 28 neurons per layer, 100 itera-
tions, C=1.
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According to Fig. 1 and Fig. 2, with 100 iterations of the three-layer neural network, the
best learning process occurs with a sigmoidal activation function. The learning error is 0.1%.
According to the branching diagrams, when a sigmoid is used as the activation function, they
are similar and indicate that the learning process for all digits is almost the same with identical
learning errors (Fig. 3). When the hyperbolic tangent is used as the activation function (Fig. 1),
the learning process for different digits proceeds with different accuracy. It is indicated by the
branching diagrams for digits "4", "5", and "9". Taking into account the Fourier spectra shown
in Fig. 1 and Fig. 2, a slight difference in the magnitude of the first and second harmonics and
the amount of fuzziness can be observed in favor of the sigmoidal activation function.

digit = 0; optimum alpha = 0.55; minimum error = 0.00117
digit = 1; optimum alpha = 0.55; minimum error = 0.00117
digit = 2; optimum alpha = 0.55; minimum error = 0.00118
digit = 3; optimum alpha = 0.55; minimum error = 0.00122
digit = 4; optimum alpha = 0.55; minimum error = 0.00118
digit = 5; optimum alpha = 0.56; minimum error = 0.00115
digit = 6; optimum alpha = 0.55; minimum error = 0.00117
digit = 7; optimum alpha = 0.55; minimum error = 0.00113
digit = 8; optimum alpha = 0.55; minimum error = 0.00123
digit = 9; optimum alpha = 0.55; minimum error = 0.00121

Sigmoidal activation function, three hidden
layers with 28 neurons per layer, 100 itera-
tions, C=1.

no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes

Hyperbolic tangent activation function, three
hidden layers with 28 neurons per layer, 100
iterations, C=1.

Figure 3. The optimal learning rate and the minimum learning error rate for the two activation functions.

digit = 0; optimum alpha = 0.55; minimum error = 0.00759
digit = 1; optimum alpha = 0.55; minimum error = 0.00292
digit = 2; optimum alpha = 0.55; minimum error = 0.00364
digit = 3; optimum alpha = 0.55; minimum error = 0.00235
digit = 4; optimum alpha = 0.55; minimum error = 0.00504
digit = 5; optimum alpha = 0.55; minimum error = 0.00455
digit = 6; optimum alpha = 0.56; minimum error = 0.0052

digit = 7; optimum alpha = 0.55; minimum error = 0.00319
digit = 8; optimum alpha = 0.55; minimum error = 0.00237
digit = 9; optimum alpha = 0.55; minimum error = 0.06594

Hyperbolic tangent activation function, three
hidden layers with 28 neurons per layer, 1000
iterations, C=0.5.

digit = 0; optimum alpha = 0.55; minimum error = 0.00235
digit = 1; optimum alpha = 0.56; minimum error = 0.00239
digit = 2; optimum alpha = 0.56; minimum error = 0.00228
digit = 3; optimum alpha = 0.55; minimum error = 0.00237
digit = 4; optimum alpha = 0.55; minimum error = 0.00246
digit = 5; optimum alpha = 0.55; minimum error = 0.00239
digit = 6; optimum alpha = 0.56; minimum error = 0.00244
digit = 7; optimum alpha = 0.55; minimum error = 0.00231
digit = 8; optimum alpha = 0.55; minimum error = 0.00246
digit = 9; optimum alpha = 0.55; minimum error = 0.00244

Sigmoidal activation function, three hidden
layers with 28 neurons per layer, 1000 itera-
tions, C=0.5.

Figure 4. Optimal learning rate and minimum learning error for two activation functions.
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It is clear that when the weights change, the slope angle of the activation function graph
also changes. It is useful if we model different interconnection densities between inputs and
outputs. The constant a=C determines the slope of the activation function. As o decreases, the
sigmoid becomes flatter, and as o increases, the sigmoid function approaches the unit jump
function. Decreasing the value of parameter a=C to the C=0.5 causes an increase in the learn-
ing error to ~0.22%, and this error rate is the same for all digits. When applied as an activation
function, the hyperbolic tangent entails an increase in the learning error (Fig. 4). It should also
be noted that the error rate is different for each digit and reaches a maximum value of ~0.7%.
In particular, we should note the digits "0", "4", "5" and "9", for which the learning process is
accompanied by a greater, almost twofold, learning error compared to other digits.

A further decrease in the value of constant C to 0.1 entails a slight increase in the learning
error for the sigmoidal activation function to 1.8% and the hyperbolic tangent a slight decrease
in the learning error to 0.2%. Although for some digits (*3" and "7"), there is an increase in the
learning error to ~1.1+1.3% (Fig. 5). For these digits, we will consider the behavior of branch-
ing diagrams and Fourier spectra in a scaled-up way (Fig.6). The branching diagrams shown in
Fig. 6 are the same, except there is a larger opacity window for the activation function, which
is described by the hyperbolic tangent. As for the Fourier spectra, when the activation function
is a hyperbolic tangent, the observed noisiness (arising from the higher harmonics existence) is
much smaller with the simultaneous presence of a significant increase in the first and second
harmonic meanings. It determines the magnitude of the minimum error and the optimum learn-
ing rate (Fig. 6). The value of the obtained optimal learning rate, according to Fig. 3 - Fig. 5,
practically does not depend on the type of the activation function and the iteration rate.

no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes

ReLU_digital_9 28neur_layer_3layers
_alpha_0.1-1.2_1000_iter_Phase
C+0.01

ReLU activation function, three hidden layers
with 28 neurons per layer, 1000 iterations, C=0.1

Diagram

digit = 0; optimum alpha = 0.55; minimum error = 0.01796
digit = 1; optimum alpha = 0.55; minimum error = 0.01769

digit = 2; optimum alpha = 0.55; minimum error = 0.01718
digit = 3; optimum alpha = 0.55; minimum error = 0.01745
digit = 4; optimum alpha = 0.55; minimum error = 0.01832
digit = 5; optimum alpha = 0.55; minimum error = 0.01744
digit = 6; optimum alpha = 0.55; minimum error = 0.017

digit = 7; optimum alpha = 0.55; minimum error = 0.01711
digit = 8; optimum alpha = 0.55; minimum error = 0.01849
digit = 9; optimum alpha = 0.55; minimum error = 0.01845

Sigmoidal activation function, three hidden lay-
ers with 28 neurons per layer, 1000 iterations,
C=0.1

digit = 0; optimum alpha = 0.55; minimum error = 0.0022

digit = 1; optimum alpha = 0.55; minimum error = 0.00174
digit = 2; optimum alpha = 0.55; minimum error = 0.00199
digit = 3; optimum alpha = 0.55; minimum error = 0.01274
digit = 4; optimum alpha = 0.56; minimum error = 0.00241
digit = 5; optimum alpha = 0.55; minimum error = 0.00186
digit = 6; optimum alpha = 0.55; minimum error = 0.00161
digit = 7; optimum alpha = 0.55; minimum error = 0.01119
digit = 8; optimum alpha = 0.55; minimum error = 0.00159
digit = 9; optimum alpha = 0.55; minimum error = 0.00189

Hyperbolic tangent activation function, three
hidden layers with 28 neurons per layer, 1000
iterations, C=0.1

Figure 5. Optimal learning rate value and minimum learning error for the three activation functions.
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Sigmoid activation function by
C=0.1 value

Hyperbolic tangent activation

ReLU activation function by
C=0.01 value

function by C=0.1 value

Figure 6. Branching diagrams and Fourier spectra in enlarged scale for the printed digit "7" given by an
index of 4x7 zeros and ones, assuming three hidden layers with 28 neurons per layer, 1000 iterations.

Fig. 6 shows the branching diagrams for three-layered NNs for different activation func-
tions.

Depending on the learning rate parameter () value, the mapping has a different number
of fixed points. When 0 < n < 0.4, the number of fixed points does not change, but both fixed
points are unstable. Since the reflection is bounded, the absence of a point attractor implies the
formation of a more complex attractor of the limit cycle type (as shown in [3]). Although the
reflection itself has no stable fixed points, its squaring of such stable fixed points is possible.
Therefore, the bifunctional diagram in this area shows the line branching. For the values of # >
0.4 (Fig. 6), the limit cycle loses its stability. At such parameter values, stable fixed points
should be sought in higher-order representations. Such a situation with the period of the limit
cycle of higher-order mappings exists in a certain region of the parameter n and then changes -
there is a further increase in local minima, and so on.

For values of n > 0.78 (Fig. 6), none of the critical cycles is stable. The chaotic behavior
of the system starts from this point.

One of the ways to solve the problem of avoiding the chaotic states of the neural network
is to automatically define the minimum number of solutions on the diagram of the logistic
function, i.e., to define the value of the training rate, at which these solutions (the number of
local minima) are doubling. This mechanism assumes the absence of a chaotic state, causing
the state appearance where there is no neural network learning. The algorithm for solving this
problem consists in defining the number of solutions on the logistic function diagram at a given
value of the training rate, at which the process of doubling the number of bifurcations takes
place and determines the optimal value of the training rate and the optimal value of the error.
As mentioned by [5], the use of the ReLU activation function significantly increases the con-
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vergence speed of the stochastic gradient descent as compared to sigmoid and hyperbolic tan-
gent, which led to a reduction in the number of iterations to achieve a given learning accuracy.
According to [5], the activation function ReLU increased the learning rate of the network com-
pared to sigmoid, and the learning error was less. Therefore, let us consider the dependence of
the learning accuracy and the optimal value of the learning rate on the number of iterations for

each activation function.

Itera-

tions hyperbolic tangent with C=0.1 ReLU C=0.1

num-

ber
digit = 0; optimum alpha = 0.55; minimum error = 0.0022 no learning processes

1000 digit = 1; optimum alpha = 0.55; minimum error = 0.00174 no learning processes
digit = 2; optimum alpha = 0.55; minimum error = 0.00199 no learning processes
digit = 3; optimum alpha = 0.55; minimum error = 0.01274 no learning processes
digit = 4; optimum alpha = 0.56; minimum error = 0.00241 no learning processes
digit = 5; optimum alpha = 0.55; minimum error = 0.00186 no learning processes
digit = 6; optimum alpha = 0.55; minimum error = 0.00161 no learning processes
digit = 7; optimum alpha = 0.55; minimum error = 0.01119 no learning processes
digit = 8; optimum alpha = 0.55; minimum error = 0.00159 no learning processes
digit = 9; optimum alpha = 0.55; minimum error = 0.00189 no learning processes
digit = 0; optimum alpha = 0.55; minimum error = 0.06338 | digit = 0; optimum alpha = 0.55; minimum error = 0.00178

100 digit = 1; optimum alpha = 0.56; minimum error = 0.04913 | digit = 1; optimum alpha = 0.55; minimum error = 0.00737
digit = 2; optimum alpha = 0.55; minimum error = 0.07122 | digit = 2; optimum alpha = 0.55; minimum error = 0.00423
digit = 3; optimum alpha = 0.55; minimum error = 0.06865 | digit = 3; optimum alpha = 0.55; minimum error = 0.00197
digit = 4; optimum alpha = 0.56; minimum error = 0.02207 | digit = 4; optimum alpha = 0.55; minimum error = 0.00384
digit = 5; optimum alpha = 0.55; minimum error = 0.02615 | digit = 5; optimum alpha = 0.55; minimum error = 0.00204
digit = 6; optimum alpha = 0.55; minimum error = 0.01866 | digit = 6; optimum alpha = 0.55; minimum error = 0.00272
digit = 7; optimum alpha = 0.56; minimum error = 0.02001 | digit = 7; optimum alpha = 0.55; minimum error = 0.0058
digit = 8; optimum alpha = 0.55; minimum error = 0.02568 | digit = 8; optimum alpha = 0.55; minimum error = 5e-05
digit = 9; optimum alpha = 0.55; minimum error = 0.05277 | digit = 9; optimum alpha = 0.55; minimum error = 0.00659
digit = 0; optimum alpha = 0.58; minimum error = 0.06623 | digit = 0; optimum alpha = 0.53; minimum error = 0.02215

10 digit = 1; optimum alpha = 0.53; minimum error = 0.06076 | digit = 1; optimum alpha = 0.53; minimum error = 0.02354
digit = 2; optimum alpha = 0.53; minimum error = 0.06683 | digit = 2; optimum alpha = 0.53; minimum error = 0.02792
digit = 3; optimum alpha = 0.53; minimum error = 0.08125 | digit = 3; optimum alpha = 0.53; minimum error = 0.0278
digit = 4; optimum alpha = 0.53; minimum error = 0.06486 | digit = 4; optimum alpha = 0.58; minimum error = 0.00855
digit = 5; optimum alpha = 0.53; minimum error = 0.07324 | digit = 5; optimum alpha = 0.53; minimum error = 0.0289
digit = 6; optimum alpha = 0.53; minimum error = 0.07832 | digit = 6; optimum alpha = 0.53; minimum error = 0.02654
digit = 7; optimum alpha = 0.53; minimum error = 0.08034 | digit = 7; optimum alpha = 0.58; minimum error = 0.01707
digit = 8; optimum alpha = 0.58; minimum error = 0.07294 | digit = 8; optimum alpha = 0.58; minimum error = 0.01077
digit = 9; optimum alpha = 0.53; minimum error = 0.08781 | digit = 9; optimum alpha = 0.53; minimum error = 0.01835
digit = 0; optimum alpha = 0.58; minimum error = 0.06623 | digit = 0; optimum alpha = 0.56; minimum error = 0.05368

5 digit = 1; optimum alpha = 0.53; minimum error = 0.06076 | digit = 1; optimum alpha = 0.56; minimum error = 0.03204
digit = 2; optimum alpha = 0.53; minimum error = 0.06683 | digit = 2; optimum alpha = 0.56; minimum error = 0.04235
digit = 3; optimum alpha = 0.53; minimum error = 0.08125 | digit = 3; optimum alpha = 0.56; minimum error = 0.05658
digit = 4; optimum alpha = 0.53; minimum error = 0.06486 | digit = 4; optimum alpha = 0.56; minimum error = 0.01315
digit = 5; optimum alpha = 0.53; minimum error = 0.07324 | digit = 5; optimum alpha = 0.56; minimum error = 0.0655
digit = 6; optimum alpha = 0.53; minimum error = 0.07832 | digit = 6; optimum alpha = 0.56; minimum error = 0.0539
digit = 7; optimum alpha = 0.53; minimum error = 0.08034 | digit = 7; optimum alpha = 0.56; minimum error = 0.0281
digit = 8; optimum alpha = 0.58; minimum error = 0.07294 | digit = 8; optimum alpha = 0.56; minimum error = 0.04212
digit = 9; optimum alpha = 0.53; minimum error = 0.08781 | digit = 9; optimum alpha = 0.56; minimum error = 0.03111

Figure 7. Dependence of the optimal learning rate and the minimum learning error on the iteration count
for two different activation functions.

Fig.7 and Fig.8 show the dependence of the optimal learning rate and the minimum learn-

ing error for each digit of a given dimension of 4x7 zeros and ones for each activation function
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and iteration number. Comparing the ReLU activation function with C=0.1 (this function cor-
responds to the best learning of a neural system with a given architecture (3 hidden layers with
28 neurons per layer)) with the hyperbolic tangent of C=0.1 at different iterations, we can make
the following conclusions:

Firstly, with an increasing number of iterations (from 5 to 100), the training error de-
creases practically twice (for the hyperbolic tangent at 5 iterations for the digit "9", the error
~8.8% to at 100 iterations the error ~5.2%; for ReLU at 5, iterations for the digit " 9" the error
~3.1% to at 100 iterations (error ~0.65%) for the hyperbolic tangent, and for ReLU practically
by 5 times.

Second, for these activation functions (hyperbolic tangent and ReLU), a non-monotonic
change in the learning error is traced both from the number of iterations and during the transi-
tion from digit to digit (Fig. 7).

Consequently, when comparing these two activation functions, the ReLU activation func-
tion of C=0.1 was the best at training this neural network for the identification of the printed
digit. Regarding the optimal learning rate, this parameter remained almost unchanged when
changing both the activation function and the iteration number and remained equal of 0.5.

Comparing the activation functions, the sigmoidal function with the C=1 and ReLU with
C=0.1 parameters, we can state that if at 100 iterations when applying the ReLU activation
function, the best learning of the neural network is generally observed (approximately at 0.1%),
then at a decrease in the number of iterations (Fig. 8) the best learning when applying the sig-
moid function as an activation function is traceable. Thus, in particular, at 5 iterations the
learning error at the application of the sigmoidal activation function is ~2.5%, while at the ap-
plication of the ReLU activation function, the error grew to ~4%. It should be noted that when
using the ReLU activation function, non-monotonic behavior of the learning error is observed
when passing from one digit to another (the smallest value of the learning error for the digit "7"
~2.8% to the largest for the digit "5"~6.5%, Fig. 8).

Consequently, the sigmoidal activation function handles the learning process of the neural
network better than the hyperbolic tangent and ReL.U. In addition, it does not lead to a jump
dependence of the learning error when moving from one digit to another. It is an important
factor when recognizing digits at insignificant (100) values of the number of iterations.

The obtained value of the optimal value of the learning rate is the same for these activa-
tion functions. Decreasing the number of iterations leads to an insignificant increase for all the
activation functions used.

Let us consider how a change in the number of hidden layers will affect the learning error
when using the sigmoidal and ReLU activation functions. Fig. 9 shows the dependence of the
learning error on the number of hidden layers, with 28 neurons in each layer, for 10 iterations.
An increase in the number of hidden layers leads to an increase in the learning error of =0.1%
at 3 layers to 2% for the 10-layer network at the sigmoidal activation function and from a
learning error of ~2% at 3 layers to =4% for the 10-layer network at the ReLU activation func-
tion.

Therefore, when the number of hidden layers increases, the smallest value of the learning
error should be expected for the sigmoidal activation function.
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Itera-
tions
num-
ber

Sigmoid C=1

ReLU C=0.1

1000

digit = 0; optimum alpha = 0.55; minimum error = 0.00117
digit = 1; optimum alpha = 0.55; minimum error = 0.00117
digit = 2; optimum alpha = 0.55; minimum error = 0.00118
digit = 3; optimum alpha = 0.55; minimum error = 0.00122
digit = 4; optimum alpha = 0.55; minimum error = 0.00118
digit = 5; optimum alpha = 0.56; minimum error = 0.00115
digit = 6; optimum alpha = 0.55; minimum error = 0.00117
digit = 7; optimum alpha = 0.55; minimum error = 0.00113
digit = 8; optimum alpha = 0.55; minimum error = 0.00123
digit = 9; optimum alpha = 0.55; minimum error = 0.00121

no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes
no learning processes

100

digit = 0; optimum alpha = 0.55; minimum error = 0.00399
digit = 1; optimum alpha = 0.56; minimum error = 0.00393
digit = 2; optimum alpha = 0.55; minimum error = 0.00405
digit = 3; optimum alpha = 0.55; minimum error = 0.00421
digit = 4; optimum alpha = 0.55; minimum error = 0.00409
digit = 5; optimum alpha = 0.55; minimum error = 0.00398
digit = 6; optimum alpha = 0.55; minimum error = 0.00399
digit = 7; optimum alpha = 0.55; minimum error = 0.00389
digit = 8; optimum alpha = 0.55; minimum error = 0.00423
digit = 9; optimum alpha = 0.55; minimum error = 0.00412

digit = 0; optimum alpha = 0.55; minimum error = 0.00178
digit = 1; optimum alpha = 0.55; minimum error = 0.00737
digit = 2; optimum alpha = 0.55; minimum error = 0.00423
digit = 3; optimum alpha = 0.55; minimum error = 0.00197
digit = 4; optimum alpha = 0.55; minimum error = 0.00384
digit = 5; optimum alpha = 0.55; minimum error = 0.00204
digit = 6; optimum alpha = 0.55; minimum error = 0.00272
digit = 7; optimum alpha = 0.55; minimum error = 0.0058
digit = 8; optimum alpha = 0.55; minimum error = 5e-05
digit = 9; optimum alpha = 0.55; minimum error = 0.00659

10

digit = 0; optimum alpha = 0.53; minimum error = 0.01586
digit = 1; optimum alpha = 0.53; minimum error = 0.01628
digit = 2; optimum alpha = 0.53; minimum error = 0.01616
digit = 3; optimum alpha = 0.53; minimum error = 0.01689
digit = 4; optimum alpha = 0.53; minimum error = 0.01644
digit = 5; optimum alpha = 0.53; minimum error = 0.0158

digit = 6; optimum alpha = 0.53; minimum error = 0.01614
digit = 7; optimum alpha = 0.53; minimum error = 0.01548
digit = 8; optimum alpha = 0.53; minimum error = 0.01701
digit = 9; optimum alpha = 0.53; minimum error = 0.01654

digit = 0; optimum alpha = 0.53; minimum error = 0.02215
digit = 1; optimum alpha = 0.53; minimum error = 0.02354
digit = 2; optimum alpha = 0.53; minimum error = 0.02792
digit = 3; optimum alpha = 0.53; minimum error = 0.0278

digit = 4; optimum alpha = 0.58; minimum error = 0.00855
digit = 5; optimum alpha = 0.53; minimum error = 0.0289

digit = 6; optimum alpha = 0.53; minimum error = 0.02654
digit = 7; optimum alpha = 0.58; minimum error = 0.01707
digit = 8; optimum alpha = 0.58; minimum error = 0.01077
digit = 9; optimum alpha = 0.53; minimum error = 0.01835

digit = 0; optimum alpha = 0.56; minimum error = 0.0242

digit = 1; optimum alpha = 0.56; minimum error = 0.02507
digit = 2; optimum alpha = 0.56; minimum error = 0.02463
digit = 3; optimum alpha = 0.56; minimum error = 0.02566
digit = 4; optimum alpha = 0.56; minimum error = 0.0251

digit = 5; optimum alpha = 0.56; minimum error = 0.02409
digit = 6; optimum alpha = 0.56; minimum error = 0.02459
digit = 7; optimum alpha = 0.56; minimum error = 0.0236

digit = 8; optimum alpha = 0.56; minimum error = 0.02595
digit = 9; optimum alpha = 0.56; minimum error = 0.02538

digit = 0; optimum alpha = 0.56; minimum error = 0.05368
digit = 1; optimum alpha = 0.56; minimum error = 0.03204
digit = 2; optimum alpha = 0.56; minimum error = 0.04235
digit = 3; optimum alpha = 0.56; minimum error = 0.05658
digit = 4; optimum alpha = 0.56; minimum error = 0.01315
digit = 5; optimum alpha = 0.56; minimum error = 0.0655

digit = 6; optimum alpha = 0.56; minimum error = 0.0539

digit = 7; optimum alpha = 0.56; minimum error = 0.0281

digit = 8; optimum alpha = 0.56; minimum error = 0.04212
digit = 9; optimum alpha = 0.56; minimum error = 0.03111

Figure 8. Dependence of the optimal learning rate and the minimum learning error on the iteration num-
bers for two different activation functions.
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Num-
ber of Sigmoid C=1, 10 iterations ReLU C=0.1, 10 iterations
hidden
layers
digit = 0; optimum alpha = 0.53; minimum error = 0.01586 digit = 0; optimum alpha = 0.53; minimum error = 0.02215
3 digit = 1; optimum alpha = 0.53; minimum error = 0.01628 digit = 1; optimum alpha = 0.53; minimum error = 0.02354
digit = 2; optimum alpha = 0.53; minimum error = 0.01616 digit = 2; optimum alpha = 0.53; minimum error = 0.02792
digit = 3; optimum alpha = 0.53; minimum error = 0.01689 digit = 3; optimum alpha = 0.53; minimum error = 0.0278
digit = 4; optimum alpha = 0.53; minimum error = 0.01644 digit = 4; optimum alpha = 0.58; minimum error = 0.00855
digit = 5; optimum alpha = 0.53; minimum error = 0.0158 digit = 5; optimum alpha = 0.53; minimum error = 0.0289
digit = 6; optimum alpha = 0.53; minimum error = 0.01614 digit = 6; optimum alpha = 0.53; minimum error = 0.02654
digit = 7; optimum alpha = 0.53; minimum error = 0.01548 digit = 7; optimum alpha = 0.58; minimum error = 0.01707
digit = 8; optimum alpha = 0.53; minimum error = 0.01701 digit = 8; optimum alpha = 0.580; minimum error = 0.01077
digit = 9; optimum alpha = 0.53; minimum error = 0.01654 digit = 9; optimum alpha = 0.53; minimum error = 0.01835
digit = 0; optimum alpha = 0.54; minimum error = 0.01562 digit = 0; optimum alpha = 0.54; minimum error = 0.06366
5 digit = 1; optimum alpha = 0.57; minimum error = 0.0153 digit = 1; optimum alpha = 0.57; minimum error = 0.05063
digit = 2; optimum alpha = 0.54; minimum error = 0.01563 digit = 2; optimum alpha = 0.54; minimum error = 0.04663
digit = 3; optimum alpha = 0.54; minimum error = 0.01629 digit = 3; optimum alpha = 0.54; minimum error = 0.08859
digit = 4; optimum alpha = 0.54; minimum error = 0.01623 digit = 4; optimum alpha = 0.57; minimum error = 0.04265
digit = 5; optimum alpha = 0.54; minimum error = 0.01566 digit = 5; optimum alpha = 0.54; minimum error = 0.08635
digit = 6; optimum alpha = 0.54; minimum error = 0.01604 digit = 6; optimum alpha = 0.54; minimum error = 0.06389
digit = 7; optimum alpha = 0.54; minimum error = 0.01542 digit = 7; optimum alpha = 0.54; minimum error = 0.03489
digit = 8; optimum alpha = 0.54; minimum error = 0.01573 digit = 8; optimum alpha = 0.54; minimum error = 0.07446
digit = 9; optimum alpha = 0.54; minimum error = 0.01662 digit = 9; optimum alpha = 0.54; minimum error = 0.04216
digit = 0; optimum alpha = 0.56; minimum error = 0.02088 no learning processes
10 digit = 1; optimum alpha = 0.56; minimum error = 0.02034 no learning processes
digit = 2; optimum alpha = 0.56; minimum error = 0.02741 no learning processes
digit = 3; optimum alpha = 0.56; minimum error = 0.06126 no learning processes
no learning processes no learning processes
digit = 5; optimum alpha = 0.56; minimum error = 0.01843 no learning processes
digit = 6; optimum alpha = 0.56; minimum error = 0.01904 no learning processes
digit = 7; optimum alpha = 0.56; minimum error = 0.03639 no learning processes
digit = 8; optimum alpha = 0.56; minimum error = 0.02022 no learning processes
digit = 9; optimum alpha = 0.56; minimum error = 0.02688 no learning processes

Figure 9. Dependence of the optimal learning rate and the minimum learning error on the hidden layers
number of the neural network for two different activation functions.

To clarify the reason for such a difference, let us consider branching diagrams and Fourier
spectra for small iteration numbers values (less than 7). In other words, we will consider the
logistic function value behavior from the value of the learning rate alpha. For this purpose, let
us consider a neural network containing 3 hidden layers with 28 neurons per layer and the
learning process for each activation function at 3 and 4, and 5 iterations (Fig. 10-Fig. 12). The
C parameter for each function was chosen according to the previously obtained results, namely
the values that corresponded to the best neural network learning (activation function: Sigmoid -

C=1.0, hyperbolic tangent - C=1.0, ReLU - C=0.1).
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Figure 10. Branching diagrams and Fourier spectra (close-up inset spectrum of one band) for the printed
digit "0" given by an array of 4x7 zeros and ones, assuming three hidden layers with 28 neurons per lay-
er, for ReLU activation function with a C=0.1 parameter, on the iterations number.
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Figure 11. Branching diagrams and Fourier spectra (close-up inset spectrum of one band) for the printed
digit "0" given by an array of 4x7 zeros and ones, assuming three-hidden layers with 28 neurons per
layer, for a sigmoidal activation function with a C=1 parameter, from the iterations number
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According to Fig. 10, for the ReLU activation function at 3 iterations, the branching dia-
gram shows a split characterized by the existence of three curves. The first curve is a monoton-
ically descending dependence; the second curve is a monotonically descending dependence
with the one extremum point existence. The third curve is monotonic, and the function describ-
ing it is a periodic function (Fig. 10). The Fourier spectra of this network display a characteris-
tic behavior, namely the existence of an appropriate number of spectral bands and harmonics
(Fig. 10). Increasing by one the iterations number (5 iterations) entails the appearance of the
fourth curve, which is characterized by a clearly defined periodicity with different periods. It is
also displayed on the Fourier spectra, resulting in the appearance of an additional band, and all
bands are characterized by the appearance of additional harmonics.

As can be easily seen, their number is equal to the sum of all existing curve harmonics
(iterations) (Fig. 10). By increasing the iterations number by one more (5 iterations), an addi-
tional curve emerges, and the number of harmonics increases (Fig. 10). The curves obtained
this way are forming a branching diagram in the final case. Consequently, an increase in the
number of iterations leads to the appearance of curves described by periodic dependence of the
logistic function value on the learning rate, and this periodicity changes both when passing
from one curve to another and when changing the learning rate. It should be noted that there
may be a case when, in a certain range of learning rate values, a multiplicity of existing period-
ic dependences (of the logistic function from the learning rate) will be observed. In the authors'
opinion, this feature leads to the appearance of transparency regions, i.e., to a decrease in the
harmonic's number. Such a decrease in the number of harmonics is accompanied by an increase
in the power spectrum value of the basic harmonics, as indicated by the Fourier spectra. It, in
turn, leads to a decrease in the value of the minimum learning error.

When applying the sigmoidal activation function to the learning process, we obtained
similar dependences (Fig. 11) as for the ReLU function. We also observed the emergence of
periodic dependences with a variable period on the learning rate, as well as the presence of
three-node points where all the existing curves intersect. The difference in these two activation
functions' applications is evident only when the number of iterations is >5, namely, in an in-
crease in the power spectrum value of the basic harmonics. It leads, as noted above, to a better
learning process (lower learning error) of the neural network.

Contrary to the previous two activation functions, the hyperbolic tangent activation
function leads to two clearly expressed chaotic neural network states in the range of learning
rate values alpha = 0.3-0.43 (Fig. 12). At alpha >0.45, the characteristic behavior of the three
curves is observed, as for the activation functions given above. An increase in the Iterations
number (“curves™) leads to a decrease in the range of chaotic state existence and, like the men-
tioned above activation functions, also to the appearance of curves described by periodic func-
tions with a variable period (Fig. 12). The increase in the hidden layers number and the de-
crease in the C parameter value for a given activation function led to a chaotic state disappear-
ance process for the neural network.
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Figure 12. Branching diagrams, Fourier spectra, and Fourier spectrum of a single close-up band for a
printed digit "0" given by an array of 4x7 zeros and ones, assuming three-hidden layers with 28 neu-
rons per layer, for a hyperbolic tangent activation function with a C=1 parameter,
from the iterations number.

4. Conclusions

To summarize all the above, we can say that the sigmoidal activation function has the best
effect on the training of a three-layer neural network for the identification of digits defined by
an array of 4x7 zeros and ones. Compared to other activation functions, there is an insignificant
change in the learning error for it during the transition from one digit to another. The increase
in the number of hidden layers does not lead to a sharp increase in the learning error. An in-
crease in the number of learning iterations is followed by the appearance of periodic depend-
ences of the logistic value of the learning rate function, the period of which is a variable of the
iterations number and the learning rate. Based on the Fourier spectra of the error function on
the learning rate value, it can be argued that an increase in the iterations number leads to an
increase in the number of the harmonic, which eventually leads to the chaotic state of the neu-
ral network. The reasons for the chaotic state appearance depend on the value of the logistic
function from the learning rate, at values alpha<0.5 due to the hyperbolic tangent activation
function will be discussed in the following paper.
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OCOBJINBOCTI 3AJIEXKHOCTI HOXUBKH HABYAHHS BAI'ATOIIAPOBI

HEWPOHHI MEPEXI BIJI ®YHKII[Ii AKTUBAIIII B IIPOIIECI PO3II3HABAHHS

JAPYKOBAHHUX [IUDP
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2Vkpainucoka Axademisn qpykapcmea
ey ITio T'onockom,19, 79020 Jlveis, Yrpaina

B po6oTi mpoBeeHo TOCHiIKEeHHs MTPpoLiecy HaBUaHHs MPH PO3Mi3HaBaHHI APYKOBaHHUX UM
3aJIe)KHO BiJ BUIy QyHKuUil akTuBauii. J{ociikeHHs BIUTMBY BUIy (YHKLIi akTHBAaLii, KiJIbKIiCTh
iTepaniii Ha mpolec HaBYaHHS HEHPOHHOI CHCTEMH 3IMCHIOBABCS 3 BUKOPHCTAHHSIM aHAII3y
®Dyp’e criekTpiB PyHKIIT MOXMOKKM HABYAHHS Ta AiarpaM po3ralyKeHHs. 3 I[i€I0 METOIO B Cepeso-
Buii Phyton po3po6nena nporpama uist 6araTomapoBoi HEHPOHHOI Mepei, sika nepeabadae 3a-
JIAHHS KUTPKOCTI IPUXOBAHUX IIAPIB 1 KITBKOCTI HEWPOHIB B HUX, Ta MIBUAKOCTI HaB4aHHs [1IBna-
KICTh HaBYAHHS PO3IIILAANach, sK MOCTiHA BeJMYMHA i BU3HAYAIOCH 11 ONTUMaJbHE 3HAYCHHS,
IpH SIKOMY CIIOCTepiraeThcsi Hallkpalle HaB4aHHs. J[s aHani3y BIUIMBY IIBHIKOCTI HaBYaHHs Ha
npolec HaBYaHHS, BAKOPUCTOBYBANACh JIOTICTHYHA (YHKIIs, sIKa OMUCY€ MPOLEC MMOBOEHHS Ya-
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ctoTu. [lokazano, mo QyHKIS MOXUOKM HaBYaHHS XapaKTepH3yeThes OidypKariifHUMu mpore-
caMu, SIKi IPUBOJATE 10 XaOTHYHOTO cTaHy npu 1>0,8. BusHaueHo onTUManbHe 3HAYEHHS IIBHUI-
KOCTI HaBYaHHS, K€ BU3HAYA€ MOSBY IPOLECY IOABOEHHS KITBKOCTI JIOKAIFHUX MIHIMYMIB.
BcTaHoBIeHO, 1110 curMoianbHa GYHKINs akTuBaLil (B mopiBHsAHHI 3 QyHKIissMu akTuBauii ReLU
Ta TinepOoMiYHUI TaHT€HC) HalKpalle 3aJ0BOJIbHSE IPOLIEC HaBYaHHS TPHOX IAPOBOT HEHPOHHOT
Mepexi Ul po3Mi3HaBaHHSA (P 3a1aHNX MacuBOM 4X7 HyIiB 1 ofuHHLE. [IOpiBHAHO 3 IHIIMMU
(YHKUISAME aKTHBALi] 111 Hel COoCTepiraeThes He3HaUHa 3MiHa MOXUOKM HaBYaHHS MPH Eepexoi
Bix oxHiel mudpu mo iHmoi. [TokasaHo, mo 30UIBIIEHHS KITBKOCTI IIPUXOBAHUX IIApiB HE IPHBO-
JIUTB JIO Pi3KOTO 301IBIICHHS MOXHOKM HaBYaHHs. 30UTbIICHHS KiBKOCTI iTepalliii HaB4yaHHS Cy-
MPOBOJUKYETHCS MOSBOK MEPIOIUYHUX 3aICKHOCTCH BEJMYMHM JOTICTUYHOI (GYHKIIT BiJ IIBHI-
KOCTi HaBYaHHSI, TIEPioJ] AKUX € 3MIHHOK BEIMYUHOIO BiJ KITBKOCTI iTepalliil Ta MIBUAKOCTI HaB-
yaHHs. BuxopuctoByroun Oyp’e criekTpu QYHKILIT TOXUOKH BiJl BEIWYWHH IIBUIKOCTI HABYaHHS,
MOJKHA CTBEPKYBAaTH, LI0 301IBIICHHS KUTBKOCTI iTepaliii cipuauHsie 301IbIIEHHS KIJTBKOCTI ra-
PMOHIK, IKi B KIHIICBOMY BHIAJIKy IPHBOAATH 10 TOSBU XaOTHYHOTO CTaHY HEMPOHHOT MEpPEexi.

Knrouosi crnosa: baratomapoBa HelipoHHa Mepeka, (QYHKIiS aKThBamii, ONTUMaJbHA IIBUI-
KiCTh HaBYaHHS, PO3Mi3HABAHHS TUDD.
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