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This paper is dedicated to the development of recurrent neural networks in order to
supplement the Al-based devices like microcontrollers and other mist computing systems. Due to
the insignificant computational power of the edge devices the aim of the study is to design and
analyze low complexity sequence models for a basic sensory time series forecasting on an
example of univariate indoor temperature data. The description of data preparation and
transformation followed by the models configuration via different architectures like simple LSTM
and GRU is provided. To calculate an optimal set of hyper-parameters for the multiple neural
network architectures a genetic algorithm has been implemented. The results of numerical
experiments conducted for each model configuration consisting of both unidirectional and
bidirectional cell connections are discussed. In addition to these studies the scheme of deploying
the developed low-complexity models on STM32 microcontroller joined with the high-
performance hub is proposed.

Key words: edge computing, recurrent neural networks, time series, genetic algorithm.

Introduction

During the last decade edge computing research which is significantly based on the
machine learning principles has been gaining more and more weight among other Al
directions. The need to design full-fledged and cloud-independent systems is due to a humber
of reasons, such as privacy concerns, latency and autonomy [1]. By now the most popular used
cases of edge computing systems are remote monitoring of assets in the oil and gas industry,
autonomous vehicles, smart grids, predictive maintenance and smart homes [2]. The latter is
mostly centered on the 10T energy management technologies to prevent energy losses and
optimize their use for heating and cooling. Major challenges for developing the corresponding
systems are: 1) providing a reliable mechanism for obtaining and accumulating data; 2)
designing and selection of sufficient rule-based or machine learning algorithms to process
gathered data in order to produce required response; 3) low cost hardware architecture design.
Due to the software aspect of the mentioned problems, the machine learning engineering is of
large-scale interest providing accurate and efficient solution to many of smart home issues [3,
4]. Despite the existence of the multiple smart home solutions, it is still necessary to keep
development of the software applications within a scope of edge computing and Al-based
methods such as promising deep learning models. For instance, in [5] authors propose the
neural network model to manage the heating behavior in smart home. In [6] researchers present
the lightweight and secure solution for the edge home automation problem; in [7] authors
propose a joining cloud and edge collaborative processing algorithm strategy using the

© Sinkevych O., 2021


https://doi.org/10.30970/eli.16.
../Downloads/oleh.sinkevych@lnu.edu.ua

12 O. Sinkevych
ISSN 2224-087X. Electronics and information technologies. 2021. Issue 16

Kubernetes deployment. One of the possible deep learning solutions for the edge smart home
system is the prediction of some sensor time series data like indoor/outdoor temperature,
humidity, energy consumption etc. For this reason a bunch of deep learning models on the
basis of recurrent neural networks has been suggested [8, 9].

In order to complement the existing approaches to the design of predictive models for the
needs of a smart home, here the goal is to develop and analyze several models of recurrent
neural networks for the edge system software. Recurrent neural networks (LSTM, GRU) are
the recommended choices for time series modeling and are widely applied to different
sequence problems. The main challenge for this research is to ensure simplicity of the models
in balance with their accuracy and computational complexity. The reason is the possibility of
further model deployment on low-powered edge computing device STM32 microcontroller
using the specific X-CUBE-AI expansion package [10].

Data description and processing

To build and analyze different recurrent neural network architectures for the predictive
models the temperature time series data have been chosen. Because of the relatively simple
behavior and accessibility the temperature data nevertheless are the valuable measurement for
every smart home energy system. Also, this choice is considered as a starting point for further
system scaling with the extra sensory measurements. For the numerical experiments, the indoor
and outdoor temperature data have been obtained using the DS18B20 digital thermometers
joined with Raspberry Pi3 database hub to store measurements. All the data were saved in
InfluxDB database installed on a RPi3 microcomputer. This experiment has been conducted at
Smart Autonomous System laboratory of Electronics and Computer Sciences faculty of lvan
Franko National University of Lviv.

In fig. 1 the 30 minute resampled indoor temperature data for March, 2021 as well as the
corresponding histogram are shown.
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Fig. 1. March temperature data and histogram

The histogram indicates the quasi-stationarity (close to the shape of the normal distribution
curve with a pronounced right tail). Since the recurrent neural networks process stationary time
series in a way better than non-stationary ones, one should ensure the stationarity of the given data.
To do that an Augmented Dickey-Fuller unit root test has been applied. As a result, the value of
statistics -5.283274 is less than -3.435, which suggests that we can reject the null hypothesis (non-
stationarity of the series) with a significance level less than 1%.

Before normalization and reduction of the temperature range to the matrix form, it is

necessary to divide the training Y; =(Xin, Yirain) @nd validation Yy, = (X i, Yoaiq ) Sets in
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some proportion, for example 80% and 20%, respectively, where X, is the feature training

set and Y, is the label training set (the same for X,y and Y, ). The choice of

proportion depends on the length of the time series y =[y*, y?,...,y"], n=1483 and can vary
depending on the specific task.
For neural network modeling in order to ensure the correct learning of the recurrent

neural network, the series must be normalized or standardized. Here, we apply the
normalization of the temperature series within the [0,1] range according to the formula:

i i ' min
v e{Yr Y}y = y (Yr)

= . : @
max(Yr ) —min(Yr)

The normalization of the training set Y; takes place before the normalization of the
validation set Y, , during which the determination of the values min(Y;) and max(Ys ), which

should be used in (1) for normalization to avoid the problem of data leakage.

After normalization of the temperature series by (1), the normalized datasets of
temperature data are converted to the matrix forms (regression-to-supervised learning
formulation) as follows:

1 v V+1 V+p

Xigain =| Y~ o ¥ v Yirain = yv+2 yv+p+1 ) 2

where v is the length of the predictor vector, p is the length of the target vector. Equation (2)
also has to be applied to the validation of the set Y, . The values of parameters v and p can

be estimated based on statistical analysis of series or dynamically in the context of selection of
hyperparameters and configurations of the neural network.
In this study, for demonstration purposes the values of parameters v and p equal to 12

and 3, respectively (12 previous values are used to predict the next 3). Such a configuration
corresponds to the multi-step prediction problem.

The last step of data preparation for the usage in recurrent neural networks (RNN) is the
3D transformation of X and X,y feature matrices which can be performed using the

next scheme:

train

Xirain = (yij )rxv = Xaan = (yijk )rxvxk , ®)

where r is the number of rows, k is the third dimension equal to 1 (univariate time series
case). Hence, the resulting dimensions of X2o, and X33, are (117312,1) and (282,12,1) .

val
Models development
After the preparation of training and validation sets the hyperparameters and architecture
of RNN should be established. Since it is assumed that the designed RNN is going to be
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deployed on a microcontroller, and the one-dimensional temperature time series does not
contain seasonal components and trends and has not been differentiated, we limit ourselves to
single-layer RNN (vanilla type if RNN) and investigate modeling accuracy within the multi-
step temperature prediction problem.

The hyperparameters H of RNN for this problem can be determined using the grid
search, random search, Bayesian optimization or genetic algorithm [11, 12]. For the sake of
simplicity the next hyperparameters have been chosen to be optimized using the genetic
algorithm: a) the length of the hidden state vectorh,, b) the batch size of data for training
batch, c) the learning rate o . The rest of hyperparameters and configuration have been
defined as follows: the number of epochs equals to 40, the activation function have been
selected as tanh() , optimization algorithm — Adam.

In this section, the configuration parameters were determined on the basis of a genetic
algorithm, where the objective function has been set as

cD(H):Nivg(model(xi,H)—yi)z, (4)

where N, is the number of samples in validation set, x' e X2, model(xi, H) defines the

result of model’s prediction, yi € Yyaiid -

Fig. 2 shows the structure of the general RNN for modeling the temperature time series.
In fig. 2 RNN; is the recurrent layer (which is represented by LSTM or GRU cell types), the

input of which is fed to three-dimensional input tensors. This layer can consist of unidirectional
or bidirectional connections between cells. Bidirectional RNN consists of two sub-layers, one
of which implements data propagation in one direction, since the second layer implements data
propagation in the opposite direction. In [13] it is shown that in some time series modeling
problems, bidirectional architectures demonstrate higher prediction accuracy, so both variants
of the RNN architecture are considered here.
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Fig 2. Architecture of proposed RNN



O. Sinkevych 15
ISSN 2224-087X. Electronics and information technologies. 2021. Issue 16

The output values of this layer are fed into the input of the fully connected layer NN, in

order to return a vector of fixed size. The resulting vector §=[¢",¥?,...,§"] is the prediction

made by the developed model.
For the numerical experiments it has been chosen two distinctive RNN cell types: LSTM
and GRU, which are efficiently being used in many of sequence learning problems.

Results and discussion

Firstly, let’s consider the application of LSTM cell types in the scope of architecture (fig.
1). As a result of conducted numerical experiments (multiple starts of model training) the
following values of hyperparameters for unidirectional and bidirectional LSTM neural network
have been obtained: h =(97,136), batch=(64,64), o =(0.01,0.01).

In fig. 3 it is presented the results of training both configurations of the LSTM neural
networks: unidirectional (fig. 3(1)) and bidirectional (fig. 3(2)), where the bidirectional
architecture allows one to obtain a relatively smaller value of the mean square error (MSE) on
the validation data set.
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Fig. 3. MSE plots during training of LSTMs

In fig 4 it is shown the distributions of the mean squared error for unidirectional (fig.
4(1)) and bidirectional (fig. 4(2)) LSTM neural networks, where bidirectional LSTM produces
smaller error values for samples from the validation set. These distributions have been
calculated for each sample in X -

Numerical experiments conducted for both unidirectional and bidirectional GRU types of
RNN allowed to obtain such values of hyperparameters: h =(59,79), batch=(128,64),

a=(0.1,001).
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Fig. 4. MSE samples values for LSTMs
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For these neural networks, the mean squared errors on validation set during the training
process have been shown the following distribution (fig. 5). Here one can see that the behavior
of bidirectional GRU during training phase is different compared to bi-directional LSTM, i.e.,
unidirectional GRU performs better from the starting epochs.
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Fig. 5. MSE plots during training of GRUs

Fig 6 presents the distributions of the mean squared error for unidirectional (fig. 6(1)) and
bidirectional (fig. 6(2)) GRU neural networks. Here, the bidirectional GRU produces smaller
errors for the samples from validation set compared to the unidirectional GRU.
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Fig. 6. MSE samples values for GRUs

On the basis of the provided results there are a few clear conclusions about the
application of RNN family models for the prediction task: 1) it is possible to efficiently use
pure LSTM and GRU predictive model even with the single recurrent layer architecture
without additional feature engineering process; 2) such data as the monthly temperature
measurements can be accurately modeled by the unidirectional and bidirectional LSTM/GRU
networks; 3) despite the bidirectional architecture performs more accurate, the computational
costs are bigger, especially for low-powered edge devices, hence unidirectional neural network
is preferable here; 4) well configured GRU type of recurrent layer can produce even better
results than LSTM for such data, nevertheless this inference should be investigated for other
sensory data; 5) genetic optimization is also suitable for hyperparameters calculation due to the
ability of parallel computations and good convergence; 6) for the microcontroller deployment it
is desirable to select the simpler model with equal or bigger accuracy, so it is recommended to
use unidirectional GRU model, if its performance equals to or better than LSTM.
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Scheme for neuro-controller system

The designed and studied RNN models can be easily deployed on a STM32
microcontroller with the X-CUBE-AI support. The proposed scheme of smart home neuro-
controller based on STM32 is depicted in fig. 7.
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Fig. 7. Smart home neuro-controller scheme

STM32 microcontroller which is used as a main mist device with the deployed
(embedded) trained neural network is connected to a bunch of sensors (temperature, humidity,
energy). These sensors produce the multivariate time series data which can be: 1) input for the
short-term forecasting or anomaly detection routine or b) processed by neuro-controller and
stored into InfluxDB database installed on main smart home hub using the Nvidia Jetson Nano
microcomputer. The processed data are transferred to hub via Ethernet or the additional ESP32
microcontroller equipped with Wi-Fi module. This scheme serves as a basis for scientific
research and has the prospect of implementation as a final digital solution for a smart home.

Conclusions and future work

In this study, it has been considered a problem of low-complexity recurrent neural
network design for the edge computations performed by a STM32 microcontroller. Real
temperature data collected via RPi3 based server and DS18B20 sensors have been used and
pre-processed. Indoor temperature time series has been queried as the model data to develop
predictive unidirectional and bidirectional LSTM/GRU models and to compare their accuracy.
Also, for optimization of the hyperparameters a genetic algorithm has been applied. This
choice was made for reasons of its parallel computations ability (to use GPU CUDA library)
and flexibility of settings. The neural network trainings have been conducted using a Nvidia
RTX 2080 Super GPU. The obtained results demonstrate that unidirectional GRU architecture
is the optimal choice for modeling the considered temperature data and can be accurately
applied to the other univariate sensory smart home measurements.

In future work the multivariate models will be designed and analyzed as well as the
process of model quantization for STM32 microcontroller. Also, it is necessary to investigate
hybrid models like CNN-GRU/LSTM, ConvGRU/LSTM, encoder-decoder etc. Feature
engineering procedure can enhance the performance of the models and should be studied as
well.
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PEKYPEHTHI HEMPOHHI MEPEXI MAJIOI CKJIAJTHOCTI
JJISA TPAHUTYHUX OBYUCJIEHD

O. CinbkeBH4
Jlveiecokutl nayionanvuuil ynieepcumem imeni leana Opanka,

eya. [Ipacomanosa, 50, 79005 Jlveie, Yxpaina
oleh.sinkevych@Inu.edu.ua

Jlana craTTs IpHCBsUCHA PO3pOOLI PEKypeHTHUX HEHPOHHHX MeEpEeX ISl HMPOrpaMHOro
3a0e3MeUYeHHs 1HTeNEeKTYaAIbHUX MPHCTPOIB, SKI MOXYTh ()YHKLIOHYBAaTH HAa OCHOBI IITYYHOTO
IHTEJIEKTY, TaKUX SIK MIKPOKOHTPOJIEPH Ta 1HII CHCTEMH IPaHUYHUX 00YuCIeHb. Uepe3 He3HAuHY
00YHCITIOBANIBHY TOTYXXHICTh TAKHX MPUCTPOIB METOK MOCTDKEHHS € po3poOka Ta aHawi3
MIPOTHOCTHYHUX MOJENEeH HU3BKOi CKJIAJHOCTI JUIsl IPOTHO3YBAHHS CEHCOPHHUX YacOBHX PS/IiB Ha
MIPUKJIAJi OJHOBHMIDHOTO YacOBOTO psIy, a CaMe BHMIPSHHX TeMIlepaTryp y HpUMIIICHHI.
Po3pobmneHi Mozeni MOXyTh JIETKO PO3rOpTaThUCS Ha MIKpOKOHTposepi cimelictBa STM32 3a
nonomororo makery posmupenHs X-CUBE-AIl.  Temmeparypri mani Oymu  3i0pani 3
BUKOPHCTaHHSM JaTyuKiB Temreparypu DS18B20, mo mimkmrouyanucs 1o Raspberry Pi 3 3i
BCTaHOBJICHOI 023010 panux InfluxDB. V craTTi HaBeaeHuUit ONUC MiATOTOBKK Ta MEPETBOPEHHS
JAHUX Y BHUIJBSIAI 9acOBOTO PsAy Ul IOJAIBIIOTO BHKOPHUCTAHHS y MpOIECi TpEeHyBaHHS
PEKYpPEHTHHX HEHMpPOHHHX Mepek. Po3risHyTa Hu3Ka KOH]Irypamniii Momeneil Ha OCHOBI MPOCTHX
onHomapoBux apxitektyp LSTM T1a GRU 3 onHOHampaBlIeHMMH Ta JIBOHAIPABICHHIMHU
3B’3KaMH MK BiAMOBITHUMH KOMipKaMH HEHPOHHUX Mepex. s po3paxyHKy ONTHMAalIbHOTO
Habopy rimeprapaMeTpiB IUIsi YOTHPBOX apXiTEeKTyp HEHpPOHHMX Mepex Oylio peasli3oBaHO
reHetHyHuil anroputM. OnTuMizanis rineprnapamerpiB BigOyBanack Ha 06a3i MiHiMizanil yHKIil
CepeTHbOKBAAPATUYHOT TOMMJIKM Ha 3pa3KkaX 3 BalifaliiHOi BHOIpKH, IO BHMaraio
0araTopa3oBHil Mpollec HaBYaHHS HEHPOHHHX MEpEeX Ul KOXKHOro Habopy TrimeprapameTpiB 3
mpoctopa momyKy. HaBemeHi pe3ynbTaTH dYHCENbHHUX EKCIIEPUMEHTIB, TPOBEACHUX IS
KoH(]irypamniif Mozmenell 3 0JHOHANIPABICHNMH Ta JBOHANPABICHUMH 3B’ I3KaMU MK KOMipKaMu
CBiIYaTh MPO MOXKIUBICTE BHUKOPUCTAHHA TAKOTO MIAXOAY Ui MOOYZOBH HPOTHOCTUYHHUX
MOJIeNeil UTA OJHOBHMIPDHUX CEHCOPHHX YaCOBHX DSNiB. AHaii3 OTPUMaHUX PE3YNbTATiB Ja€
3MOI'y BU3HA4YaTH ONTHMaJbHY HNPOTHOCTUYHY MOJENbh HU3BKOI CKJIAIHOCTI JUIl PO3TOPTaHHS Ha
MiKkpokoHTposepi. TakoX 3ampoIOHOBAHO CXEMy pO3TOpPTaHHA pO3poOJICHHX Mojeneill Ha
MikpokoHTponepi STM32, o0'erHaHoMy 3  BHCOKONPOAYKTUBHMM  XaboMm Ha  06asi
mikpokomm’totepa Nvidia Jetson Nano 3 rpadiubum mpuckoproBadem, Mo Moxe epeKTHBHO
3aCTOCOBYBATHCS [UISl TPEHYBAHHS IIPOCTUX HEHPOHHUX MEPEK.

Knrouogi crosa: TpaHn4HI OOUNCIICHHS, PEKypEHTHI HEHPOHHI MEpeXKi, 4acoBl psaH, TeHETHY-
HUH aJITOPUTM.
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