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The paper studies different regression approaches for modeling COVID-19 spread and its
impact on the stock market. The logistic curve model was used with Bayesian regression for
predictive analytics of the COVID-19 spread. Bayesian approach makes it possible to use
informative prior distributions formed by experts that allows considering the results as a
compromise between historical data and expert opinion. The obtained results show that different
crises with different reasons have different impact on the same stocks. It is important to analyze
their impact separately. Bayesian inference makes it possible to analyze the uncertainty of crisis
impacts. The impact of COVID-19 on the stock market using time series of visits on Wikipedia
pages related to coronavirus was studied. Regression approach for modeling COVID-19 crises
and other crises impact on stock market were investigated. The analysis of semantic structure of
tweets related to coronavirus using graph theory and frequent itemsets and association rules
theory was carried out.

Keywords: coronavirus, COVID-19, Bayesian regression, stock market, predictive analytics.

1. Introduction

At present time, there are different methods, approaches and data sets for modeling the
COVID-19 spread [1, 2, 3, 4, 5, 6]. The approach based on Bayesian inference allows us to
receive a posterior distribution of model parameters using conditional likelihood and prior
distribution. In the Bayesian inference, we can use informative prior distributions which can be
set up by an expert. So, the result can be considered as a compromise between historical data
and expert opinion. It is important in the cases when we have a small number of historical data.
In [7, 8, 9, 10] we consider different approaches of using Bayesian regression. For solving
Bayesian models, numerical Monte-Carlo methods are used. Gibbs and Hamiltonian sampling
are the popular methods of finding posterior distributions for the parameters of probabilistic
mode [11, 12, 13]. Bayesian inference makes it possible to obtain probability density functions
for model parameters and estimate the uncertainty that is important in risk assessment
analytics. Different problems caused by COVID-19 are being widely considered in social
networks especially Twitter. So, the analysis of tweet trends can reveal the semantic structure
of users’ opinions related to COVID-19.

In this paper, we consider the use of Bayesian regression for modeling the COVID-19
spread. We also consider the impact of COVID-19 on the stock market using time series of
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visits on Wikipedia pages related to coronavirus. We study a regression approach for modeling
the impact of different crises on the stock market. The usage of frequent itemsets and
association rules theory for analyzing tweet sets was considered.

2 Bayesian Model for COVID-19 Spread Prediction

For the predictive analytics of the COVID-19 spread, we used a logistic curve model.
Such model is very popular nowadays. To estimate model parameters, we used Bayesian
regression [11, 12, 13]. A logistic curve model with Bayesian regression approach can be
written as follows:

n~N(wo),

n= “ .10°
1+exp(-B(t-tp))

t =10 (Date — Date, ),

where Date, is a start day for observations in the historical data set, it is measured in weeks, o

parameter denotes maximum cases of coronavirus, B parameter is an empirical coefficient
which denotes the rate of coronavirus spread. The data for the analysis were taken from [2].
For Bayesian inference calculations, we used a ’pystan’ package for Stan platform for
statistical modeling [13]. Figure 1 shows the box plots for calculated B parameters of the
coronavirus spread model for different countries.
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Figure 1: Box plots for beta coefficients of coronavirus spread model for different countries.

Fig. 2, 3 show the predictions for coronavirus spread cases using current historical data.
In practical analytics, it is important to find the maximum of coronavirus cases per day, this
point means the estimated half time of coronavirus spread in the region under investigation.
New historical data will correct the distributions for model parameters and forecasting results.
The results show that the Bayesian regression model using logistic curve can be effectively



B. M. IlaBaumieHKo 5
ISSN 2224-087X. Enexrponika Ta iHpopMmaiiiHi TexHozorii. 2020. Bumyck 13

used for predictive analytics of the COVID-19 spread. In Bayesian regression approach, we
can take into account expert opinions via information prior distribution, so the results can be
treated as a compromise between historical data and expert opinion that is important in the case
of small amount of historical data or in the case of a non- stationary process. It is important to
mention that new data and expert prior distribution for model can essentially correct previously
received results.
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Figure 2: Modeling of COVID-19 spread for USA.
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Figure 3: Modeling of COVID-19 spread for Italy.

Using Wikipedia Pages Visits Time Series for Prediction Stock Market Movements

Let us consider the influence of the COVID-19 spread on the stock market movement.
The influence of impact factors can be described by alternative data, such as characteristics of
search trends, users’ activity in social networks, etc. Figure 4 shows the stock market indexes
and some stock price time series in the period of the biggest impact of COVID-19 on the stock
market. In this study, as alternative data, we consider the time series of visits to Wikipedia
pages which are related to COVID-19.

The figure 5 shows the time series of numbers of visits to Wikipedia pages. For our
analysis, we consider the time period of [’2020-02-15°,"2020-05-01"]. For Bayesian regression,
we used Stan platform for statistical modeling [13]. As features, we used z-scores of the time
series of Wikipedia page visit numbers. As a target variable, we used z-scores of S&P-500
index. We applied the constraints that linear regression coefficients cannot be positive. Figure
6 shows the mean values and 0.01, 0.99 quantiles of probability density function of predictions
for S&P-500 index. Figure 7 shows the boxplots for PDF of linear regression coefficients.
Figure 8 shows variation coefficient which is equal to the ratio between the standard deviation
and absolute mean values of regression coefficients. These coefficients describe the uncertainty
of regression features. The obtained results show that different features have different impact
and uncertainty with respect to the target variable. The most impactful and the least volatile
among the considered features was the feature of the number of visits to the Wikipedia page
about the vaccine.
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Figure 4: Stock market indexes and stock price time series.
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Figure 5: Time series of numbers of visits to Wikipedia pages.
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Figure 6: Mean values and 0.01, 0.99 quantiles of probability density function of predictions
for S&P-500 index.
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Figure 7: Boxplots for PDF of linear regression coefficients.
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Figure 8: Variation coefficient for features.

Regression Approach for Modeling the Impact of Different Crises on the Stock Market

The coronavirus outbreak has a huge impact on the stock market. It is very important, e.g.
for forming stable portfolios, to understand how different crises impact stock prices and the
stock market as a whole. We are going to consider the impact of coronavirus crisis on the stock
market and compare it to the crisis of 2008 and market downturn of 2018. For this, we can use
the regression approach using ordinary least squares (OLS) regression and Bayesian regression.
Bayesian inference makes it possible to obtain probability density functions for coefficients of
the factors under investigation and estimate the uncertainty that is important in the risk
assessment analytics. In Bayesian regression approach, we can analyze extreme target variable
values using non-Gaussian distributions with fat tails. We took the following time periods for
each of crises - crisis_2008: [2008-01-01,2009-01-31], down_turn_2018: [2018- 10-01,2019-
01-03], coronavirus: [2020-02-18,2020-03-25]. For each of the above mentioned crises, we
created a regression variable which is equal to 1 in the crisis time period and 0 in other cases.
Figure 9 shows the time series for S&P500 composite index.
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Figure 9: Time series for S&P500 composite index.
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As a target variable, we consider the daily price return. Knowing the daily price return,
changes in crises periods, one can estimate the ability of investors to understand trends and
recalculate portfolios. These results were received using Bayesian inference. For Bayesian
inference calculations, we used Python ’pystan’ package for Stan platform for statistical
modeling [13]. Figure 10 shows the box plots of impact weights of each crisis on S&P500
composite index. The wider box for coronavirus weight can be caused by shorter time period of
investigation comparing with other crises and consequently larger uncertainty.
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Figure 10: Box plots of impact weights of each crisis on S&P composite index.

For our investigations, we took a random set of tickers from S&P list. Figure 11 shows
top negative price returns in coronavirus crises. Figure 12 shows the tickers with positive price
return in coronavirus crisis. Figure 13 shows the weights for different crises for arbitrarily
chosen stocks. We calculated the distributions for crises weights using Bayesian inference.
Figure 14 shows the box plots for crisis weights for different stocks.
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Figure 11: Top negative price returns in COVID-19 crises.

BN crisis_2008

REGN —
[ mmm down_turn_2018
W= coronavirus
CNX
——
I
oM =
I
NEM ]
E CcoG
s -
——
Lm —
I
SWN __
I
I
Do —
EQT —
-0.010 -0.005 0.000 0.005 0010 0015 0.020

Figure 12: Tickers with positive price returns in COVID-19 crises.
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Figure 13: The weights for different crises for arbitrarily chosen stocks.



14 b. M. IlaBiuireHko
ISSN 2224-087X. Enexrponika Ta iHpopmariiiHi rexHosorii. 2020. Bumyck 13

GOOG

beta_2008 *—I—*

beta_2018

beta_coronavirus + 04——.—#

value value

beta_2008

AAPL
:
T beta_2018 - L]
@ I
’ +—.—F !

Bela

beta_coronavirus

NFLX SBUX

beta_2008 *
beta_2018 *—I—F
beta_coronavirus = 4 # M‘v{—.—*ﬂl beta_coronavirus Q*O ‘

value value

beta_2008

g

7} beta_2018 + -
@

Beta

s

beta_2008

GE
beta_2018 +—I—+

beta_2008

WMT
beta_2018 v*—l—*l

Beta
Beta

beta_coronavirus beta_coronavirus | #

“
-0.03 -0.02 -0.01 0.00 0.01 =0.03 =0.02 =0.01 0.00 0.01
value value

Figure 14: Box plots for crisis weights for different stocks.

Analysis of Tweets Related to COVID-19

Let us consider the approaches in the analysis of the tweet set related to COVID-19.
Users’ connections can be represented by a graph where vertices represent users and edges
stand for their connections. Using graph mining algorithms, we can detect users’ communities
and find the top lists of users by different vertice scores as Hub, Authority, PageRank,
Betweenness scores. For community detection, we used a Community Walktrap Algorithm
[15] from ’igraph’ package [16]. For the visualization, we used Fruchterman-Reingold [17]
from this package. The tweets with ’coronavirus’ keyword loaded in January, 2020 were used
for analysis. Figure 15 shows revealed users’ community for the subset of tweets.
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Figure 15: Graph of users’ connections and users’ communities.

In tweet trends, the different users’ communities with different points of view are are
formed. The analysis of trends and points of view of different communities reveals structure of
communication trends in tweets related to COVID-19. In the analysis of semistructured data,
e.g. texts, the theory of frequent itemsets and association rules can be used [18, 19, 20, 21, 22,
23, 24, 25]. Using frequent itemsets and association rules, we can find a semantic structure in
specified semantic fields of lexemes. Different methods and approaches of using frequent
itemsets and association rules we considered in [26, 27, 28]. For our analysis, we created a
thematic field which consists of important keywords related to COVID-19. Figure 16 shows
the text frequencies for chosen keywords. Some keywords denote semantic fields which are a
set of semantically related words, e.g. semantic field ‘fear' comprises such words as 'fear,
'worried', 'panic’, 'apocalyptic’, etc. Figures 17-19 show the semantic frequent sets found in the
tweet set. Figures 20 shows found grouped association rules related to coronavirus. Found
frequent itemsets and association rules reveal a semantic structure of tweets related to COVID-
19. The quantitative characteristics of frequent itemsets and association rules, e.g. value of
support, can be used as features in the predictive analysis.
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Figure 16: Frequencies for keywords.
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Figure 20: Grouped association rules.
Conclusion

The received results show that the logistic curve model can be used with Bayesian
regression for the predictive analytics of the COVID-19 spread. Such a model can be effective
when the exponential growth of coronavirus confirmed cases takes place. In practical analytics,
it is important to find the maximum of coronavirus cases per day, this point means the
estimated half time of coronavirus spread in the region under investigation. New historical data
will correct the distributions for model parameters and forecasting results. For conducting the
modeling of COVID-19, we developed the *Bayesian Model for COVID-19 spread Prediction’
Python package, which can be loaded at [14] for free use. In Bayesian regression approach, we
can take into account expert opinions via information prior distribution, so the results can be
treated as a compromise between the historical data and expert opinion that is important in the
case of small amount of historical data or in the case of a non-stationary process. It is important
to mention that new data and expert prior distribution for model can essentially correct
previously received results. The impact of COVID-19 on the stock market using time series of
visits on Wikipedia pages related to coronavirus was studied. The obtained results show that
different features have different impact and uncertainty with respect to the target variable. The
most impactful and the least volatile among the considered features was the feature of the
number of visits to the Wikipedia page about the vaccine. The obtained results show that
different crises with different reasons have different impact on the same stocks. Bayesian
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inference makes it possible to analyze the uncertainty of crisis impacts. The uncertainty of
crisis impact weights can be measured as a standard deviation for weight probability density
functions. The uncertainty of coronavirus crisis is larger than other crises that can be caused by
shorter analysis time. Knowing the uncertainty, allows risk assessment for portfolios and other
financial and business processes. Using the graph theory, the users’ communities and
influencers can be revealed given vertices quantitative characteristics. The analysis of tweets
related to COVID-19 was carried out using frequent itemsets and association rules. Found
frequent itemsets and association rules reveal the semantic structure of tweets related to
COVID-19. The quantitative characteristics of frequent itemsets and association rules, e.g.
value of support, can be used as features in the predictive analysis.
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VY poborti posrnsHyTo MojentoBanHs nomupeHas COVID-19 Ha ocHOBI iCTOPUYHUX JaHUX.
st mporHo3Hoi aHaniTuku nomupeHHs: COVID-19 BUKOpHCTAHO MOJENb JIOTICTUYHOI KPHBOI.
JInst OLIHKM TapameTpiB Mojesi BHKOpUCTaHO OaieciBchbky perpecito. Ilei minxin mo3sossie
OTpUMATH TMOCTEPIOpHHIT po3mofin HWMOBIipHOCTI st mapamerpiB Mojeni. Y OaileciBcbkomy
BUBEJICHHI MOKHAa BHKOPHCTOBYBATH 3ajaHi ekcreproM iH(opMaTuBHI ampiopHi posmoxinu i
pEe3yJIBTaT MOXKHA PO3MISIIATH SIK KOMIPOMIC MiX ICTOPHYHUMH JaHHMH Ta JYMKOI EKCIepTa.
Ile BaxIMBO y THX BHIIAJKaX, KOJHM € HEBEJHMKAa KIJbKICTh ICTOPHYHMX AaHUX. IMOBipHiCHMI
Xz 103Bossie OTpUMaTH (GYHKIFO IiTbHOCTI WMOBIpHOCTI JUTst 1iThoBOT 3MiHHOI. [Toka3zaHo,
mo GaieciBcbky perpecifiHy Mojens i3 BHKOPHUCTAHHSIM JIOTICTHYHOI KPHBOI MOYKHA
BHUKOPHMCTOBYBaTH UIsl MPOTHO3HOI aHAMITHKK TIOLMIMPEHHST KOpoHaBipycy. Taka Monenb Moxe
OyTH e(peKTUBHOIO, KOIHM € EeKCIOHEHI[ifiHe 3pOCTaHHs KiJbKOCTI MiATBEpIUKCHUX BHIIAJKIB
KOpoHaBipycy. BaxxIMBO 3HaTH MakCHMyM BHITQJIKIB 3apakeHHs KOpOHaBipycoMm 3a m00y. Llei
MaKCHMYM Bi1oOpakae MOJIOBHHY YaCOBOr0O Mepiony MOIIUPEHHs KOpoHaBipycy. O4YeBHIHO, 110
HOBI JiaHi Ta ekcriepTHe GOpPMyBaHHS anpiOpHUX PO3MOIINIIB MapaMeTpiB MOJIENI MOXKYTh CYTTEBO
KOPEKTYBaTH TIONEpe/iHi pe3yJIbTaTH MpOrHo3yBaHHs. [laHaeMis KOpOHaBipyCy Mae BeNTHKHi
BILUTHB Ha (piHAHCOBHII PUHOK. AHali3 TAaKOTo BIUIMBY € BaXJIMBHM, 30KpeMma mpHu (GopMyBaHHI
cTabinpHux iHBecTHuiiiHuX moprdenis. ocmimkeno Bmme COVID-19 na auHamiky iHmekca
S&P-500 Ha donmoBOoMy pHHKY. Sk perpeciiiHi 03HAKM, BHKOPHCTAHO YacoBi PsSad KiJBKOCTI
BiZBimyBaHb CTOpiHOK Bikimenii, ski MaloTh mHpsMe YK OIOCEPEAKOBaHE BiJHOLICHHS IO
TeMaTHKH KOpOHaBipycy. SIK WiNbOBY 3MiHHY BHKOPHCTaHO KiJBbKICHI XapaKTepHCTHKH iHIEKCY
S&P-500. Otpumani pe3ysibTaTd CBimYaTh, IO Pi3HI O3HAKM MAIOTh Pi3HHIl BIUIMB Ta Pi3HY
HEBU3HAYCHICTH 1IO/I0 1ih0BOI 3MiHHOI. HalieekTHBHILIOW Ta HalMEHII BapiaTHBHOKIO Cepej
PO3IIISSHYTHX O3HAaK Oyja O3HaKa Ha OCHOBI KinbKOCTi BiaBimyBaHb cropinku Bikinenii mpo
BaKL¥HY. PO3IJIIHYTO BIUIMB KPH3H, 3yMOBIICHOT MAaHAEMi€I0 KOPOHABIpyCy Ha akiii KoMmaHii Ha
(hOHIOBOMY PHHKY Ta NMPOBEACHO MOPIBHAIBHUI aHaii3 IBOro BIUIMBY i3 BIIMBOM Kpu3u 2008
poky Ta cragoM puKy 2018 poky. JIis 1bOro BUKOPHUCTAHO JiHIHY KilacCHYHY Ta OaiieciBChbKy
perpecii. OtpuMani pe3ysibTaTd MOKa3ylTh, WO PI3HI KPHU3H I0-PI3HOMY BIUIMBAIOTH HA
JIMHaMIKy I[iH akifiii BHACNIiJOK peamizamii pi3HHX MexaHi3miB BruuBy. Ilinxix Ha OCHOBI
0aiieCiBCHKOrO BHBEICHHS NO3BOJISIE aHANI3yBaTH HEBH3HAUYCHICTh BIUIMBY DI3HHX (iHAHCOBHX
Kpu3. Pe3ynbTaTy mokasyroTh, [0 HEBH3HAYEHICTh KOPOHABIPYCHOT KpU3M OinbIua MOPIBHIHO 3
iHIMMH  Kpu3aMu. Po3paxyHOK HEBM3HAYEHOCTI MO3BOJSIE DPOOMTH OLIHKY pH3HKIB IS
inBecTHIiiHuX mopTdeniB Ta pisHUX (iHaHcoBux Ta OisHec-mpouecis. COVID-19 akruBHO
0OrOBOPIOETHCS Y COLIIAIBHIX MEPEXkax, TOMY XapaKTePHCTHKH [OBiJOMIICHb, 30KpEMa y MEPexi
TBITep MOXXYTh MaTH NPOTHO3HI BIAcHBOCTI. BHKOPHCTOBYrOYH Teoplfo rpadiB pO3rISIHYTO
3B’SI3KKM MK KOpHCTyBauaMu Mepexi TiTep y macusi mosigomiieHb, mos’s3anux i3 COVID-19.
IMoka3aHo, 1[I0 3a JOMOMOrOK alIrOpuTMIiB Teopii rpadiB, MOXHA BHSIBJSATH CIHIIBHOTH
KOPHCTYBauiB Ta 3HAXOUTH BIUIMBOBUX KOPUCTYBAaUiB 3a Pi3HMMHU OIIHKaMH BepuinH. [Toka3aHo,
10 BHUKOPHCTOBYIOYM TEOPII0 YaCTUX MHOXHH Ta acOLiaTHBHUX INpPABWJ, MOXKHA 3HAiTH
CEeMaHTHYHY CTPYKTYDPY Y MacHBi MOBITOMJICHb B ME)KaX 33AaHOT0 TEMATHYHOTO MOJISL.

Kniouosi  cnosa: xoponasipyc, COVID-19, G6aiieciBcbka perpecis, (GOHIOBHI PHHOK,
MPOrHO3HA aHAJITHKA.
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