ISSN 2224-087X. Enexrponika ta inpopmauiitai Texnosorii. 2018. Bumyck 9. C. 113-119
Electronics and information technologies. 2018. Issue 9. P. 113-119

VJIK 519.172.1
CREATING AI FOR GAMES WITH UNREAL ENGINE 4

V. Kushnir, B. Koman

Ivan Franko National University of Lviv,
50 Drahomanova St., Lviv, Ukraine, 79005
vasvllI95@gmail.com

Game Al in Unreal Engine 4 based on decision tree and called Behavior tree. The advantage
of developing Al is the wide usage of this method in game industry for building an Al bots. It
helps to build not a simple Al but a big model that helps us to build more interesting game. Nev-
ertheless, this method of developing Al has a disadvantage which make hard to build a big system
if you are only on a start to build Al with this method. In this paper I will show game engine
called Unreal Engine 4 and how artificial intelligence can be developed. Also in this article will
be shown a good start using this method for building great and large Al instantly.

Key words: Unreal Engine 4, Behavior tree, decision tree, blackboard, selector, root, loop.

Introduction [1]. Behavior tree is a graphical, modeling language and a good approach
for developing big Al systems for games in a short period a time. It can be easily used to de-
velop Al for different tasks. This method was developed by R.G. Dromey with first publication
of some keyideasin 2001[1]. Early publications on this work used the terms "genetic software
engineering" and "genetic design" to describe the application of behavior trees [1]. The reason
for originally using the word genetic was because sets of genes, sets of jigsaw puzzle pieces
and sets of requirements represented as behavior trees all appeared to share several key proper-
ties:

e they contained enough information as a set to allow them to be composed — with be-

havior trees this allows a system to be built out of its requirements,

e the order in which the pieces were put together was not important — with requirements

this aids coping with complexity,

e when all the members of the set were put together the resulting integrated entity ex-

hibited a set of important properties.

For behavior trees important emergent properties include: the integrated behavior of the
system implied by the requirements and the coherent behavior of each component referred to
in the requirements.

Use of the term genetic came from eighteenth century by thinker Giambattista Vico, who
said, "To understand something, and not merely be able to describe it, or analyse it into its
component parts, is to understand how it came into being — its genesis, its growth true under-
standing is always genetic". Despite these legitimate genetic parallels it was felt that this em-
phasis led to confusion with the concept of genetic algorithms. As a result, the term behavior
engineering [1] was introduced to describe the processes that exploit behavior trees to con-
struct systems. The term "behavior engineering" has previously been used in a specialized area

© Kushnir V., Koman B., 2018

114 V. Kushnir, B. Koman

ISSN 2224-087X. Electronics and information technologies. 2018. Issue 9
of Artificial Intelligence - robotics research. The present use embraces a much broader rigor-
ous formalization and integration of large sets of behavioral and compositional requirements
needed to model large-scale systems [1].

Since the behavior tree notation was originally conceived a number of people from the
DCCS (Dependable Complex Computer-based Systems Group — a joint University of Queen-
sland, Griffith University research group) have made important contributions to the evolution
and refinement of the notation and to the use of behavior trees. Members of this group include:
David Carrington, Rob Colvin, Geoff Dromey, Lars Grunske, lan Hayes, Diana Kirk, Peter
Lindsay, Toby Myers, Dan Powell, John Seagrott, Cameron Smith, Larry Wen, Nisansala
Yatapanage, Kirsten Winter, Saad Zafar, Forest Zheng. Company Epic games uses this method
of building ai and integrate it in their engine called Unreal Engine 4 [1].

The paper consists of several sections: Section 2 and 3 overviews original Behavior Tree
and Behavior Tree in Unreal Engine 4. Section 4 describes how to use Behavior tree in Unreal
Engine 4. In the last section was made a conclusion.

Original Behavior Tree [2,3]. BT is graphically represented as a tree in which the nodes
are classified as root, control flow nodes, or execution nodes (tasks). For each pair of con-
nected nodes the outgoing node is called parent and the incoming node is called child (Fig. 1).
The root has no parents and exactly one child, the control flow nodes have one parent and at
least one child, and the execution nodes have one parent and no children. Graphically, the
children of a control flow node are placed below it, ordered from left to right (Fig. 1).

The execution of a BT starts from the root which sends ticks with a certain frequency to
its child. A tick is an enabling signal that allows the execution of a child [2]. When the execu-
tion of a node in the BT is allowed, it returns to the parent a status running if its execution has
not finished yet, success if it has achieved its goal, or failure otherwise.

A control flow node is used to control the subtasks of which it is composed. A control
flow node may be either a selector (fallback) node or a sequence node. They run each of their
subtasks in turn. When a subtask is completed and returns its status (success or failure), the
control flow node decides whether to execute the next subtask or not. Fall back nodes are used
to find and execute the first child that does not fail. A fallback node will return immediately
with a status code of success or running when one of its children returns success. The children
are ticked in order of importance, from left to right. Sequence nodes are used to find and exe-
cute the first child that has noty et succeeded [3]. A sequence node will return immediately
with a status code of failure or running when one of its children returns failure. The children
are ticked in order, from left to right. In order to apply control theory tools to the analysis of
Behavior Trees, BT can be defined as three-tuple [2,3].

V. Kushnir, B. Koman 115
ISSN 2224-087X. Electronics and information technologies. 2018. Issue 9

Sequence
Open Selector Walkthrough Close
Sequence Smash
Unlock Open

Fig. 1. Abstract model of Behavior tree.

Behavior tree in Unreal Engine 4 [4]. Behavior tree in Unreal Engine 4 is more difficult
than his original. It is a combination of two assets:

1. Blackboard, which uses as Al memory and stores data as a dictionary,

2. Behavior Tree, which is the Al head. It makes a decision that causes another decision.

For developing Behavior tree there are main nodes [4]:

Composite | These are the nodes that define the root of a branch and the base rules for
how that branch is executed

Task These are the leaves of the Behavior Tree, the nodes that "do" things and
don't have an output connection.

Decorator | Also known as conditionals. These attach to another node and make deci-
sions on whether or not a branch in the tree, or even a single node, can be
executed.

Service These attach to Composite nodes, and will execute at their defined frequency
as long as their branch is being executed. These are often used to make
checks and to update the Blackboard. These take the place of traditional Par-
allel nodes in other Behavior Tree systems.

Root The Root node is unique in the Behavior Tree and is the starting point for the
Behavior Tree. It can only have one connection, and you cannot attach Deco-
rators or Services to it. The Root Node has no properties of its own, but se-
lecting it will show the Behavior Tree properties in the Details Panel, where
you can set the Blackboard Asset of the Behavior Tree.

116 V. Kushnir, B. Koman
ISSN 2224-087X. Electronics and information technologies. 2018. Issue 9

Composite Nodes define the root of a branch and the base rules for how that branch is
executed.
Composite nodes consists of nodes:

e Selector.Nodes execute their children from left to right, and will stop executing its
children when one of their children succeeds. If a Selector's child succeeds, the Selec-
tor succeeds. If all the Selector's children fail, the Selector fails.

e Sequence Nodes execute their children from left to right, and will stop executing its
children when one of their children fails. If a child fails, then the Sequence fails. If all
the Sequence's children succeed, then the Sequence succeeds.

e The Simple Parallel node allows a single main task node to be executed along side of
a full tree. When the main task finishes, the setting in Finish Mode dictates if the node
should finish immediately, aborting the secondary tree, or if it should delay for the
secondary tree to finish.

Tasks are nodes that "do" things, like move an Al, or adjust Blackboard values.

Decorator, also known as conditionals in other Behavior Tree systems, are attached to a
Composite or a Task node and define whether or not a branch in the tree, or even a single
node, can be executed.

There are several common decorators that used more often:

e The Blackboard node will check to see if a value is set on the given Blackboard
Key.Decorator node in shows how to connect data from Blackboard into Behavior tree
and this decorator checks if the value from blackboard is set.

e Conditional Loop. Loop runs while the condition in it is true.

e Does path exist decorator checks if bot can use MoveTo task.

e Loop decorator helps us to execute some part of tree several times. Unlike conditional
decorator this loop use not a condition but the number of cycles loop body must be
executed.

Services attach to Composite nodes, and will execute at their defined frequency as long as
their branch is being executed. These are often used to make checks and to update the Black-
board. These take the place of traditional Parallel nodes in other Behavior Tree systems.

Root is a starting point for our Behavior Tree.

Implementation in Unreal Engine 4 [4]. For Al implementation in Unreal engine 4 was
chosen to make a bot which will fight with another bots and when there will be only one he
will come to home.

Make a fire event which will draw a line and hit the enemy as illustrated on Fig. 2.

V. Kushnir, B. Koman 117
ISSN 2224-087X. Electronics and information technologies. 2018. Issue 9

> Fire_Event o

Custom Event

* [LineTraceByChannel
» P====
@ Start out Hit
@ End Return Value
Trace Channel

Trace Complex (m]

£i2 Actors to Ignore

Draw Debug Type
For Duration -

Ignore Self =]

Fig. 2. Three bots and a box as home location.

Also was used Al Perception component to find enemy and set value function to send
enemy object reference to the blackboard used by behavior tree (Fig. 3).

R —r
&> Event Receive Tick Al (J

»+ Cast To ThirdPersonCharacter

»
Te-» »

Owner Contraoller @

Set V as
| Target is Blackboard Component

Controlled Pawn @ 71 ictient Cast Failed >
\

Delta Seconds Or

[

As Third Person Character @

~

| / | el
. " f GetBlackboard a o | i
\ s L T S Ty ~—| ® object value
~ @ Target Return Value @ —
D —
= .

Fig. 3. Setting enemy variable to the Blackboard if bot find one otherwise — none.

On Fig. 4 shown already developed Behavior tree. Tree starts from the Root node and
move to selector that has connected: loop decorator (with infinite parameter, which means that
was used infinite loop), home location service(service that checks out home location position
and if it stays unchangeable) and find enemy service(service that helps bot to find a new ene-
mies using bot sight and hearing perception). Enemy reference object and home location
stores in blackboard as shown on Fig. 5.

118 V. Kushnir, B. Koman
ISSN 2224-087X. Electronics and information technologies. 2018. Issue 9

& ROOT
MewBlackboardData

€ Loop

Loop: rfrte

) selector

Selector L]
<# HomeLocation
HomelLocation tck every 0 40s 060

k7S FindEnemy
FindEnemy- tick every 0.40s 0,608

R

() Blackboard Based Condition LI Sequence
Blackboard Enemy is s Set L] Sequence

% Sequence
Sequerce

ST a u mn | B |

MeveTo Homelocaton
Wait 308 -
EvPunch’
Punch

Fig. 4. Behavior tree of our bot.

-*_ Blackboard

al

New:<ey

AKeys
= HomeLocation
= Enemy

Fig. 5. Blackboard where bot saves data he needed.

As a result bots finds their enemies and call fire event which create a line a put damage to
the traced bot. After fighting if bot can’t find another enemy, bot goes to his home location and
next time when he finds one more enemy, he will move to him and will try to kill.

Conclusion. In the paper, was shown Al development for games using Behavior tree on
Unreal engine 4. Also in article was shown development interface of Behavior tree. Figures
show us that we can easily build a Behavior tree for different tasks. So the main advantages of
these development are: 1) Simplify on development process by using visual development. 2)
Fast bot and event reaction of a bot from Al. 3) Using virtual perceptions like: sight and hear-
ing that makes our bot more humanable about interaction in game environment. 4) Unreal En-
gine 4 already defined services, tasks and decorators that helps us to build Al with more inter-
esting mind. I think that in future Behavior tree will be used more widely except game industry
and it will get more improvements which will cause a great results.

V. Kushnir, B. Koman 119
ISSN 2224-087X. Electronics and information technologies. 2018. Issue 9

REFERENCES

1. Colledanchise M. How Behavior Trees Modularize Hybrid Control Systems and General-
ize Sequential Behavior Compositions, the Subsumption Architecture, and Decision
Trees. / M. Colledanchise, P. Ogren. — Fort Collins, 2016. — 505 c.

2. Colledanchise M. Behavior Trees in Robotics and Al: An Introduction / M. Colledan-
chise, P. Ogren., 2017. — 198 c.

3. Ogren P. Increasing Modularity of UAV Control Systems using Computer Game BTs /
Petter Ogren., 2012. — 16 c.

4. Unreal Engine 4 Documentation [Enextponnuii pecypc] // Epic Games. — 2018. — Pexxum
JIOCTYIy 110 pecypcey: https://docs.unrealengine.com.

Cmamms: nadiviuna 0o pedaxyii 15.04.2018,
doonpayvosana 23.04.2018,
nputinama 0o opyky — 25.04.2018.

CTBOPEHHSA HITYYHOT O IHTEJEKTY JJIA ITOP
3A JOIIOMOI'OIO UNREAL ENGINE 4

B. Kymnip, b. Koman

Jlvgiecorutl nayionanbrutl yHieepcumem imeni leana Opanka,
eyn. [pacomanosa 50, Jlvsis, Yrpaina 79005
vasylll95@gmail.com

IrpoBuit mryunuii intenexkt B Unreal Engine 4 rpyHTy€ThCs Ha AepeBax pillieHb, sIKi Ha3UBa-
101h JlepeBamu noseainku. [lepeBara po3poOku mojsirae B MIMPOKOMY BHKOPHCTaHHI Li€l TEXHO-
norii B irpoBiit inayctpii exoHoMmii, ¢inancax. L{s po3poOka mpomomarae 30yayBaTH CKIAAHY CH-
CTeMy, sKa J0JacTh I[iKaBi pedi B HALIy Ipy, Aa€ 3MOTY CTBOPUTHU 0OTa, SIKMH OM aBTOMaTH4HO
BHKOHYBaB IEBHi Aii 3a Hac. OHAaK Iell MEeTO Ma€ NeKijbKa HEeIOIKIB, sSIKi HE Tal0Th 3MOTH 30Y-
JyBaTH CKJIaJHy CUCTEMY, SKILO BU TUIBKM ITOYAJIM MPALFOBATH 3 LI€I0 TEXHOJIOTiE0. Takoxk BOHA
HE € HaJTO FHYYKOIO TOPIBHSHO 3 HEHPOHHUMH MEpeXKaMH, alrOpUTMaMH Kiacudikamii uu Kiac-
TepH3aLlii.

OrmnycaHo BUKOPUCTAHHS Li€i TEXHOJOTIT VISl CTBOPEHHS IITYYHOTO iHTEJEKTY, CXapaKTepH-
30BaHO HOro BHKOPHCTaHHS B pPi3HHX cdepax MisUTbHOCTI, HABEACHO IXHIO CTPYKTYpY, BimoOpa-
JKEHO Bi3yanbHHH iHTepdeic s 1o0yI0BH TAaKOTro JepeBa i 3a3Ha4eHO BiIMIHHOCTI MiX KJlacH-
YHUMU [OBEIIHKOBUMH JiepeBaMHu Ta nmoBeAinkoBumu aepeBamu B Unreal Engine 4, Bukopucras-
Hs iX y moOyTi Ta 3acTOCyBaHHs JUlsl CKIaAHUX orepauiil. Takox omnncaHo 30epexeHHs JaHUX y
MOBE/IIHKOBHX JIePeBax, MaHIMYJILIIO 3 JaHUMH, TIEPeaBaHHs JaHUX MiXK TOBEIiHKOBUMH Aepe-
BaMH Ta CIELialbHOIO Bi3yaJlbHOIO MOBOIO MporpamyBaHHs bBitonpint, B3aemonito BitonpinTis
OJIMH 3 OJIHUM, 1100 OTPUMATH JOPEYHUH KOHTPOJIEp A KepyBaHHS irpOBUM OOTOM, B3a€MOJI0
BiJIYYTTiB irpoBoro 0oTa 3 MOBEAIHKOBUM JEPEBOM SIK Ha BXiJ, TaK i HA OTPUMaHHSI OOTOM IIEB-
HUX 3aBJaHb, sIKi BiH HOBHHEH BUKOHATH. Y KiHII BiZoOpaXkeHO MO0y I0BaHy CUCTEMY KEepyBaHHs
irpoBUM GOTOM 3 BUKOPUCTaHHSAM Bi3yaJbHOI MOBH IIpOrpaMyBaHHs BIIONpIHT, cCUCTEMY MpPUHH-
STTS PIlICHB 3 3aCTOCYBAHHSIM ITOBEAIHKOBOTO JIePEeBa, a TAKOXK B3aEMOIII0 MiXK HUMH.

Kuniouosi cnosa: Unreal Engine 4, nepeBa noBeniHku, AepeBa pillleHb, JOIIKA, CEIEKTOP, KO-
PiHb, LUK, HOCITiIOBHICTb.

