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We have generated randomized Chomsky’s texts and Miller’s monkey random texts (RTs), 
basing on a source natural text (NT), and clarified their rank–frequency dependences, Pareto dis-
tributions, word-frequency probability distributions, and vocabularies as functions of text lengths. 
Here the Chomsky’s RT is a NT randomized so that its ‘words’ represent any sequences of letters 
and blanks between the nearest occurrences of some preset letter (e.g., the letter i). We have com-
pared the exponents appearing in different power laws that describe the word statistics for the 
NTs and RTs, and have analyzed how well theoretical relationships among those exponents are 
fulfilled in practice. We have proven empirically that the exponents α and β of the Zipf’s law and 
the word probability distribution for the Chomsky’s RTs are limited by the inequalities α < 1 and 
β > 1, while their Heaps’ exponent should be equal to η ≈ 1. We have also compared our results 
to those obtained for the monkey texts. We have shown that the vocabulary of the Chomsky’s 
texts is richer than that of the monkey texts. The Heaps’ law is valid to extraordinarily good ap-
proximation for the Chomsky’s RTs, similarly to the RTs generated by the intermittence silence 
process and unlike to sufficiently long NTs that reveal slightly convex vocabulary versus text 
length dependences plotted on the double logarithmic scale. 

Key words: random texts, randomized texts, Miller’s monkey texts, Chomsky’s randomiza-
tion, power laws, Zipf’s law, Pareto distribution, word-frequency probability distribution, Heaps’ 
law. 

 
Introduction. Statistical regularities describing frequencies of occurrences of different 

linguistic elements in texts are widely studied in computational linguistics. They can provide 
the data important for information retrieval, intellectual data analysis, automated text indexing, 
and many other related fields [1]. Among statistical laws peculiar to individual texts and their 
corpora, Zipf’s and Heaps’ laws traditionally attract much attention of researchers [2]. The 
reasons lye both in their possible applications (e.g., in text categorization, stylometry, and lan-
guage or author detecting [3]) and the studies of fundamental problems associated with either 
linguistic or purely statistical grounds for those rules [4–6]. Besides of usual natural texts 
(NTs), different kinds of randomized NTs and random texts (RTs) have often become subjects 
of extensive computational-linguistic researches [7–12]. In particular, this is caused by the 
efforts aimed at advanced distinguishing among the content-bearing (natural or artificial) mes-
sages and meaningless sequences of characters [13, 14]. 
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Up to date, many types of artificial texts have been studied to some extent. In particular, 
these are well-known ‘Miller’s monkey’ sequences (see [7]), RTs generated according to the 
Simon’s model (see [2, 15]), and ‘texts’ obtained via different randomization procedures ap-
plied to NTs (see, e.g., [16]). An important idea lying behind the attention of researchers to the 
RTs is a potential feasibility of their numerical or even analytical analyses, using the probabil-
ity theory. The main subject of the present work is statistical studies of the RTs generated us-
ing the algorithms close to the Chomsky’s method, and comparison of the results with those 
derived for the initial NT. 

 
Materials and methods. The NT subjected to our analysis was the J. R. R. Tolkien’s 

novel “The Lord of the Rings” containing nearly 516 thousand words (see Table 1). We re-
moved all of characters from the text except for letters (including those with diacritical signs 
usually present in the extended Latin alphabet) and did not discriminate among the lower- and 
upper-case letters. The compound hyphenated words were usually treated as single words and 
not split into elemental constituents. The contracted forms were reduced to their full equiva-
lents (Frodo’s cracking → Frodo is cracking, etc.), while the possessive nouns like Frodo’s in 
Frodo’s fiftieth year were left unchanged. 

We generated two randomized versions of the original NT (abbreviated hereafter as NT0) 
according to the recipes very close to that suggested by N. Chomsky. They are denoted as RT1 
and RT2. Additional RTs were also created, which were termed as RT3 and RT4 (see below). 
According to the basic Chomsky’s method for randomizing NTs, the ‘word’ in a RT represents 
any sequence of ‘letters’ between the nearest occurrences of the letter e. The latter is the most 
frequent letter in English texts, so that its frequency is closest to that of the space as a word 
separator (see, e.g., [17]). From the data most often reported for the English language, the rela-
tive frequencies of the letter e and the space (s) are equal to fe = 0.125±0.005 and 
fs = 0.18÷0.22, respectively. The latter frequency implies that the average word length should 
be lav ≈ 4.5 letters, although one should remember that two alternative definitions, 

)/( lsss NNNf +=  or lss NNf /=  (with Nl and Ns being the total amounts of letters and 
spaces, respectively), may be used in practice (see [11]). Notice that, for out text NT0, we had 
fs = 0.196÷0.244 (lav being from 4.1 to 5.1 letters), depending on the definition used. 

 
Table 1  

Some statistical characteristics of our NT and the related RTs  

Text label Total text length in letters  
(without blanks), 103 

Total text length L 
in words, 103 Total vocabulary L, 103 

NT0 2100.9 516.2 13.7 
RT1 2482.0 134.7 94.8 
RT2 1969.0 134.6 94.0 
RT3 2100.9 412.9 18.7 
RT4 333 50.0 8.5 
 
Instead of e, in this work we used a different letter, i (fi = 0.070÷0.073, with the letter-

frequency rank ranging from r = 5 to r = 7 for different texts), so that the average ‘word’ 
length in the RTs was somewhat larger. Our first method (RT1) meant replacing the letters i 
with the spaces, while the spaces were replaced with the letters i. According to the second 
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method (RT2), we first removed the spaces from the text and then replaced the letters i with 
the spaces. The both methods were similar to the original Chomsky’s recipe. 

Our third method of producing RTs, RT3, meant removing the spaces from the text and 
then randomly generating them with a preset frequency, fs (we chose, somewhat arbitrarily, the 
value 0.18). Notice that neither the total amount of letters nor the number of words in the NT is 
left unchanged by the randomizations procedures RT1 to RT3. We generated word separators 
in the text RT3 using a class Random(). To illustrate a diversity of RTs and take look at their 
possibly manifold statistical properties, we did not bother with a known problem of true ran-
domness of the generator. Moreover, we deliberately tolerated its non-random biases origi-
nated, probably, from the use of current time as a parameter when seeding different instances 
of the class Random. 

Finally, our last RT, RT4, was truly random rather than randomized, and so it had nothing 
to do with the initial NT. It corresponded to a family of ‘monkey texts’ that have been ana-
lyzed by B. Mandelbrot, H. Simon, G. Miller and N. Chomsky (see, e.g., [17]), with the word-
separator frequency fs = 0.18 and the equal frequencies of each letter fl = (1 – fs)/M, where M 
denotes the size of the ‘alphabet’. We dealt with the two letters only (M = 2) and the whole text 
length was equal to L = 4105 ⋅  words. No sequential chains of spaces were permitted in the RT4. 

We calculated the absolute frequencies F of word types as functions of their rank r, the 
‘vocabulary’ (i.e., the amount of different word types) V depending on the (variable) text 
length L, V(L), the probability density p(F) as a function of the frequency (which is often 
termed as a ‘lexical frequency spectrum’), and the cumulative probability function P(F) de-
fined in a common manner as P(F0) = Pr(F ≥ F0). Original software was developed for these 
purposes, using the language C#. 

 
Results and their discussion. Fig. 1 displays the rank–frequency dependences calculated 

for all of our texts, NT0 and RT1–RT4. Usually, those dependences are treated as being de-
scribed by a power law [4]: 

( )F r r−α∝ . (1) 

It is known as a Zipf’s law, with the exponent α  being roughly equal to one. As seen from 
Fig. 1, all the dependences deviate to different extents from the straight lines on the double 
logarithmic scale, thus evidencing that the Zipf’s law represents an approximation rather than a 
rigorous quantitative regularity. In particular, one observes a well-known departure from line-
arity of the F(r) function for NT0 in the high-frequency region (for the ranks r ≤ 10÷20), 
which is usually disregarded or partly mended with the Mandelbrot’s correction, and a step-
wise behaviour at the lowest frequencies, which is associated with massive sets of hapax le-
gomena (F = 1), dis legomena (F = 2), etc. However, clear nonlinearities still persist in the 
middle-frequency region. In our opinion, the data is somewhat better described by a continu-
ous, slowly varying increasing function α = α(r) than by the idea of crossover between two 
power-law regions with different exponents, due to a transition from ‘kernel’ to ‘unlimited’ 
lexicons [18]. Note that the authors of Ref. [19] have called sufficiently long texts like our 
NT0 as ‘saturated’ texts, claiming a known phenomenon of ‘convex’ shape of their log F  vs. 
log r curves (see also Ref. [20]). The slopes for the high-frequency (20 < r < 500) and low-
frequency (r > 500) regions are α ≈ 1.05 and 1.58, respectively. 

As evident from our empirical data (see Fig. 1 to Fig. 4), the RTs RT1 and RT2 reveal 
very similar statistical behaviours. Since our RTs are only single statistical realizations of the 
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randomization algorithms described in the previous section, one can hope that their properly 
averaged Zipf’s curves, like all the other statistics, are the same. As a result, the randomization 
procedures abbreviated as RT1 and RT2 can be supposed to give the identical results. Like in 
the case of a similar RT studied in Ref. [17], RT1 and RT2 manifest a more pronounced linear 
log F(log r) behaviour, the only exception being the lowest-rank region (r < 20). The Zipf’s 
exponent α calculated outside the lowest-rank and staircase regions amounts to αRT1 ≈ 0.91. 

Regarding the text RT3, it is unlike all the other texts in all respects (see the continuous 
lines in Fig. 1 to Fig. 4). The analysis shows that its characteristics are dominated by the spe-
cific features of practical work of the random generator utilized. In particular, all of the rele-
vant empirical dependences are very far from the usual power law-like ones, with the only 
exception of the Heaps curve (see Fig. 4a and a further discussion). 

 
Fig. 1. Dependences of absolute word frequency F on the word rank r represented on log-log scale for the 

original NT (NT0) and the RTs (RT1, RT2, RT3 and RT4). 
 

  
Fig. 2. Dependences of cumulative word probability P on the absolute word frequency F represented on 

log-log scale for the original NT (NT0) and the RTs (RT1, RT2, RT3 and RT4). 
 
The ‘intermittent silence process’ underlying the text RT4 results in a staircase-like F(r) 

dependence, which is partly observed even at the lowest ranks. The reason is easily under-
stood: all the ‘words’ having the same lengths (1, 2, ... letters) have equal probabilities and so 
equal frequencies, whereas the incomplete staircase behaviour for low ranks is due to insuffi-
cient statistics, i.e. due to finite size of the text. The linear fitting for RT4 performed outside 
the regions of the lowest and highest ranks yields in the Zipf’s constant α equal to 1.20. 



O. Kushnir, V. Buryi, S. Grydzhan et al. 
ISSN 2224-087X. Electronics and information technologies. 2018. Issue 9  

98 

Fig. 2 presents the cumulative probability distribution for the texts NT0 and RT1–RT4, or 
a so-called Pareto function. Since the dependence P(F) is in fact a renormalized inverse func-
tion of F(r), one gets (see, e.g., [4, 21]) 

( )P F F −π∝ , (2) 
π = α–1. (3) 

Eqs. (2) and (3), however, do not consider a fine though important point: because of its stair-
case nature, the dependence F(r) cannot be plainly inverted into P(F). To do this, one has to 
get rid of the stairs, through assigning the same rank to different word types having equal fre-
quencies. Owing to this peculiarity, which is generally neglected in the literature, the link be-
tween formulae (1)–(3), and so the relation between the exponents α and π, are not so straight-
forward. 

 
Fig. 3. Dependences of mass probability function p on the absolute word frequency F represented on log-

log scale for the original NT (NT0) and the RTs (RT1, RT2, RT3 and RT4). 
 
As seen from Fig. 2, the P(F) curves deviate from linearity, especially in the regions of 

the lowest and highest frequencies. The slopes for the texts NT0 and RT1 (or RT2) estimated 
in the intermediate region are respectively πNT0 ≈ 0.87 and πRT1 ≈ 1.15, thus giving αNT0 ≈ 1.15 
and αRT1 ≈ 0.87. While it is difficult to assign a single-valued Zipf’s exponent to NT0 (see 
above), the latter αRT1 value agrees satisfactorily with that obtained from the data of Fig. 1.  

Performing the same procedure for RT4, one obtains a rough estimation πRT4 ≈ 0.86. The 
value αRT4 ≈ 1.16 calculated on this basis with Eq. (2) correlates moderately with the direct 
result αRT4 ≈ 1.20. Notice also that the effect of quasi-stepwise P(F) behaviour for the ‘monkey 
texts’ has earlier been revealed by Bernhardsson et al. [12]. These authors believe that the 
‘true’ Pareto index π corresponding to the smooth theoretical function (2) is a slope of the 
straight line that corresponds to the envelope of the actual log P(log F) dependence. 

The probability density functions for out texts are depicted in Fig. 3. Disregarding, as be-
fore, a specific p(F) dependence for RT3, one can notice that all the other curves are qualita-
tively similar to those typical for the NTs. It is well-known (see, e.g., Ref. [4]) that the p(F) 
function should behave according to the power law: 

( )p F F −β∝ , (4) 

with the constant index β linked to the Zipf’s exponent via 
1 1 1β = + α = + π . (5) 
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Fig. 4. Dependences of vocabulary size V averaged 

over different windows on the text length L, as calcu-
lated for the original NT (NT0) and the RTs (RT1, RT2, 
RT3 and RT4). Panels (a) and (b) correspond to linear 
and log-log scales, respectively. (c) V(L) dependence 
for RT4 plotted on the linear scale, with no averaging 
over the windows. Straight line is a linear fit in the 
overall L range. Insert shows dependence of the Heaps 
constant η(L) at the beginning of RT4, as calculated 
from the V(L) dependence displayed in Fig. 4c. 

 
In general, analyzing quantitatively the dependences of Fig. 3 and deriving β on this basis 

have some limitations [4, 22–26]. Being in fact a derivative of the Pareto function, the p(F) 
function manifests much more noise. This is readily confirmed by linear fitting of the p(F) 
curve for the text NT0 plotted on the log-log scale. Even after excluding from consideration 
the most noisy distribution ‘tail’, we obtain the exponent βNT0 ≈ 1.56 which, according to for-
mula (5), leads to a completely unreliable result, αNT0 ≈ 1.79. Indeed, the high-rank region is 
roughly characterized by the value 1.58, not to mention a still less αNT0 peculiar of the lower 
ranks. The results become still worse if the lowest-frequency data (in particular, the first 11 
data points in Fig. 3) are used, although they embrace a great bulk of the word types and are 
often used in the fitting (see [23]). Then we get βNT0 ≈ 1.44 (and so αNT0 ≈ 2.27), which is far 
from the real Zipf’s exponents. In this respect, it would be better to derive the β exponent using 
the analytical techniques like those presented in Refs. [4, 22–26], instead of linear fitting. 

Surprisingly, the results greatly improve for the case of RT1 or RT2 and, moreover, the 
appropriate curves are less noisy and closer to linearity. Discarding the first point of the prob-
ability distribution (i.e., the region with the steepest slope) and its noisy tail, we obtain 
βRT1 ≈ 2.15. With Eq. (5), this implies αRT1 ≈ 0.87, in a good agreement with the values 0.91 
and 0.87 derived following from the data of Fig. 1 and Fig. 2. 

The ‘spikes’ observed in the data generated by the intermittence silence process (see the 
dashed line in Fig. 3 for RT4) are already well-known [8, 10, 12]. The linear fitting on the log-
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log scale results in the exponent βRT4 ≈ 1.89 (i.e., αRT4 ≈ 1.12), which fairly agrees with the 
values 1.83 (1.20) and 1.86 (1.16) obtained using respectively the Zipf’s and Pareto depend-
ences. According to the theory, the β exponent is given by the general formula [12] 

2 ln ln(1 )
ln ln(1 )

s

s

M f
M f

− −
β =

− −
. (6) 

In our case (M = 2 and fs = 0.18) Eq. (6) yields the value βRT4 ≈ 1.78, which is not so far from 
our estimations for RT4. Some discrepancy between the theory and the empirical data can 
originate from the fitting itself, as well as from relatively short length of the text and the ac-
companying finite-size effects. 

Fig. 4 shows the V(L) functions for our NT and RTs on the linear and log-log scales. Here 
the exception is the vocabulary growth curve for the text RT3, which acquires irregular shape 
on the double logarithmic scale and so has been omitted in Fig. 4b. Note that, for eliminating 
the noise, the V(L) dependences presented in Fig. 4a, b have been averaged over moving win-
dows of the lengths L, with the minimal window size and the window shift step equal to 
100 words. For the sake of comparison, we also present in Fig. 4c a non-averaged V(L) de-
pendence for RT4. It reveals some fluctuations, which are the best observed at small L. Finally, 
the total vocabulary sizes for all the texts under test are collected in Table 1. 

Although some authors suggest complicated theoretical functions for the dependence of 
the vocabulary on the text size (see, e.g., Refs. [20, 27]), this dependence is commonly repre-
sented by a power Heaps’ law [28–30], 

( )V L Lη∝ . (7) 

Here the constant η, or the Heaps exponent, is linked with the other parameters as follows (see, 
e.g., Ref. [31]): 

1 1η = β− = α  (α  ≥ 1),  
1η =  (α  < 1).  (8) 

The validity of formula (7) is clearly evidenced by the log-log plots of Fig. 4b for the 
texts RT1 and RT2, where the slopes are ηRT1 ≈ 0.95 and ηRT2 ≈ 0.96 and the coefficients of 
determination R2 ≈ 0.99999. A close proximity of the Heaps exponents to one is also con-
firmed by the V(L) functions plotted on the linear scale. Here the linear fits, which are not 
shown in Fig. 4a, are also satisfactory (R2 ≈ 0.999). As seen from the above discussion, the 
texts RT1 and RT2 are characterized by the Zipf’s exponent clearly less than one. According 
to formulae (8), then the Heaps exponent has to be exactly one, i.e. the vocabulary has to in-
crease linearly with increasing text size. Our empirical data in fact prove this feature of the 
RTs generated along the Chomsky’s method. We believe that the small discrepancy between 
ηRT1,2 and the unit value should originate from the calculation inaccuracies, finite-size effects 
and the limitations associated with a single statistical realization of the randomization proce-
dure. To remove the latter limitation, one must generate a sufficiently large sample (say, 103 or 
104) of the RTs and calculate their statistically averaged parameters. Finally, we are to notice 
that the same statistical feature, η ~ 1, is typical for the RTs generated by the simplest version 
of the Simon’s growth model (see Refs. [2, 15]). 

In general, the Heaps’ law fulfils well for RT4. Using the averaged data of Fig. 4b, one 
obtains ηRT4 ≈ 0.79 as a slope and a very high R2 (larger than 0.999999). These results confirm 
the conclusion [12] that the monkey books obey the Heaps’ law extremely well. Following 
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from the β value derived earlier (1.78) and formulae (8), we get the theoretical η exponent 
equal to 0.78, which agrees with our empirical data within the limits of the fitting errors. 

Notice also that, according to formula (6), the Heaps exponent for the monkey text cannot 
reach one, ηRT4 < 1, irrespective of the M and fs values. This is an unobvious property because 
a naive reasoning may have assumed just the contrary: the vocabulary of the text where any 
combinations of symbols are permitted should seemingly grow much more rapidly, say, line-
arly with increasing text size. On the other hand, the same intuitive considerations concerning 
the vocabulary of the Chomsky’s RTs would have led to the conclusions about slower vocabu-
lary growth (ηRT1,2 < 1). Indeed, it is evident that NTs reveal much poorer vocabularies than 
RTs, of which vocabularies are limited only by a number of possible combinations of letters. 
The Chomsky’s RTs are randomized NTs not totally random and, therefore, at least some 
minimal portion of the initial (‘true’) words can, in principle, survive the randomization proc-
ess, thus not contributing to rapid vocabulary increase, as compared with purely RTs. This 
again contradicts our empirical data, though it would be instructive to substantiate the fact 
ηRT1,2 ≈ 1 basing on thorough theoretical grounds. 

Some attention should be paid to the smallest-L region of the V(L) function for RT4. Issu-
ing from purely computational reasons, it would be convenient to analyze this region, using a 
‘raw’, non-averaged dependence V(L). Since the latter is not being averaged over different 
window positions in the text, we have allowed it to contain much more detailed data, including 
in the region under test (see Fig. 4c). This is unlike the averaged V(L) curve in Fig. 4b where 
the small-L region is poorly represented. The linear fit performed in the overall abscissa range 
in Fig. 4c results in the slope ηRT4 ≈ 0.78, thus agreeing perfectly with the theory. Nonetheless, 
the initial part of the V(L) dependence persists in deviating from the linear trend that dominates 
elsewhere. The most convenient mathematical way for expressing this phenomenon would be 
assuming that η = η(L). Fig. 4c, insert, shows the Heaps exponent obtained as a (non-
smoothed) logarithmic derivative in the initial (L < 5000) part of the V(L) dependence. It testi-
fies a presence of a ‘transition process’ in the vocabulary growth, which is accompanied with a 
rapid decrease in the η exponent (from ~ 1.0 at L = 1 to about 0.85 already at L = 4000). In 
spite of its small importance under the conditions of infinite text length increase, the transition 
process mentioned represents a principled empirical fact available for any text characterized 
with η < 1. It emphasizes that the theoretical curve given by Eq. (7) cannot describe the data at 
L ~ 1 where we have V ~ L. 

As seen from Fig. 4b, the NT, NT0, demonstrates the most obvious departure from the 
Heaps’ law. As with RT4, this phenomenon can be treated using a slowly varying function of 
the text length, η = η(L). In the regions of small and large L, we obtain respectively 
ηNT0 ≈ 0.68 and ηNT0 ≈ 0.48 (R2 ≈ 0.999). Hence, one can conclude that the convexity of the 
V(L) dependence plotted on the log-log scale represents a notable feature of moderately long 
NTs and their important difference from the RTs generated using the intermittence silence and 
the Chomsky’s algorithm. 

Finally, the V(L) function for RT3 (see Fig. 4a) offers a curious example of possible vo-
cabulary growth curves peculiar for artificial RTs. While the overall tendency is a linear rela-
tion between V and L, the curve also manifests a regular, almost periodic structure, with the 
period roughly equal to LT ~ 54000. It seems reasonable to assume that periodic ‘accelerations’ 
and ‘decelerations’ of the vocabulary growth are associated with specific features of the ran-
dom generator employed to arrange the word separators. Instead of being truly ‘random’, the 
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latter arranges the blanks so as to first generate long (and so mostly nonrecurring) ‘words’, and 
then produce a great number of short ‘words’, which naturally appear to be the same more fre-
quently. This implies that the text-developing process includes alternating stages of faster and 
slower vocabulary growths, thus resulting in quasi-periodicity of the Heaps curve V(L). 

 
Conclusions. We have generated a number of randomized texts based on a source NT 

(NT0) and have clarified statistical regularities of their lexical sets. Our RTs have been pro-
duced using the algorithms close to that suggested by N. Chomsky (RT1 and RT2), as well as 
by the ‘intermittence silence’ algorithm (RT4). To obtain a broader scale of RTs, we have also 
employed a random-like recipe for word separating in the initial text (RT3). Among different 
statistical characteristics, we have studied the rank–frequency dependence, the Pareto distribu-
tion, the lexical frequency spectrum, and the vocabulary as a function of the text length. 

The main findings of the present work can be summarized as follows. First, we have 
demonstrated that relatively long ( 5105 ⋅  words or longer) NTs manifest apparently more con-
vex Zipf’s curves than the Chomsky’s RTs, of which rank–frequency dependences are ap-
proximately linear on the log-log scale. The latter is also peculiar for the envelope of the Zipf’s 
curve for the monkey text, in spite of quasi-staircase behaviour of the latter curve. 

We have elucidated the problem of deriving the exponents appearing in different power 
laws that describe the word statistics of the NTs and RTs, and have analyzed to which extent 
the theoretical relationships among those exponents are fulfilled in practice. In particular, the 
lexical-frequency spectral function p(F) for the Chomsky’s text reveal less fluctuations than 
that for the NT and, therefore, the exponents α and β found respectively from the F(r) and p(F) 
dependences correlate better. We have also proven empirically that the word-statistics expo-
nents α and β for the Chomsky’s texts are limited by the inequalities α < 1 and β > 1. Then the 
Heaps exponent for this type of RTs should be equal to η ≈ 1, in agreement with our data. This 
situation is similar to the RTs produced in frame of the simplest Simon’s model. We have also 
demonstrated that the inequality ηRT1 > ηRT4 is valid for the Heaps exponents of the Chomsky’s 
and Miller’s monkey texts. Notice that the power-law exponent β for our monkey text (with 
the alphabet size M = 2) agrees with the established theoretical value.  

We have confirmed empirically that the Heaps exponent is less than one for the ‘monkey 
text’ RT4 and found that it is very close to one for the texts RT1 and RT2 randomized accord-
ing to N. Chomsky. One can reformulate these facts as a following counter-intuitive statement: 
the vocabulary of the randomized Chomsky’s texts is richer than that of the monkey texts. It is 
important that the statistical properties of the Chomsky-like texts RT1 and RT2 are in fact 
identical and are not affected by the differences of practical algorithms used for their genera-
tion. 

We have empirically confirmed the statement of Ref. [12] that the Heaps’ law is valid to 
extraordinarily good approximation for the monkey texts and have demonstrated for the first 
time that the same is true for the randomized Chomsky’s texts. This is in a clear contrast with 
relatively long NTs, which reveal slightly convex vocabulary–text length dependences plotted 
on the double logarithmic scale. 

Concerning the problem of distinguishing among the NTs and RTs, the artificial monkey 
texts can be easily recognized by their spike-like lexical-spectrum dependences, whereas the 
artificial Chomsky’s texts can be identified by a linear growth of their vocabulary on the text 
length. Differentiation of the latter texts from the Simon’s ones represents a separate problem. 
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ТА ДЕЯКИХ РАНДОМНИХ ТЕКСТІВ НА ЙОГО ОСНОВІ  
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На основі вихідного природного тексту згенеровано рандомізовані тексти Хомського і 

рандомні тексти “мавпи Міллера”. Рандомні тексти створено за таким алгоритмом: усі лі-
тери мають однакову наперед задану ймовірність, а ймовірність розділювача поміж слова-
ми (пробілу) задається незалежно від них. Вивчено залежності ранг–частота, розподіли ку-
мулятивної ймовірності Парето, розподіли ймовірності частоти слів і залежності кількості 
різних слів (словники) від кількості всіх слів як функції довжини тексту. Під рандомними 
текстами Хомського розуміємо природний текст, рандомізований так, що “слова” в ньому 
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є довільними послідовностями літер і пробілів між найближчими появами деякої наперед 
визначеної літери (наприклад, i). Виконано порівняння показників степенів, які фігурують 
у різних степеневих законах, що описують статистику слів для природного тексту і рандо-
много тексту, а також проаналізовано, наскільки теоретичні співвідношення між цими сте-
пенями дотримано на практиці. Згадані співвідношення дещо нагадують аналоги так званих 
співвідношень універсальності поміж степенями різних критичних параметрів у фізиці кри-
тичних явищ. Емпірично доведено, що показники α і β законів Ціпфа і розподілу ймовірності 
слів для рандомних текстів Хомського обмежені нерівностями α < 1 і β > 1, тоді як показ-
ник закону Гіпса для словника повинен становити η ≈ 1. Ці результати порівняно з даними 
для текстів мавпи Міллера. З’ясовано, що словник текстів Хомського багатший, ніж слов-
ник текстів мавпи Міллера. Виявлено, що закон Гіпса для рандомних текстів Хомського 
виконується з винятковою точністю, схоже до рандомних текстів, генерованих згідно з 
процесом “intermittence silence”. Це дещо відмінне від ситуації для достатньо довгих при-
родних текстів, які виявляють дещо “випуклу” залежність словника від довжини тексту, 
побудовану в подвійному логарифмічному масштабі. 

Ключові слова: рандомні тексти, рандомізовані тексти, тексти мавпи Міллера, рандомі-
зація Хомського, степеневі закони, закон Ціпфа, розподіл Парето, розподіл імовірності ча-
стоти слів, закон Гіпса. 

 


