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The paper deals with the spectrum transformation of the signal restored by regular and irregu-
lar sampling. Irregular sampling is studied as a method of obtaining the noise-like error spectrum
of the error of a restored signal. Hence the order of the output low-pass filter can be reduced, or
in certain cases, this filter can be omitted. The most interesting area of application for this method
may be the reproduction of a digital bitmap image. To simplify the problem, the error spectrum
transformation is studied for the one-dimension sampling case.

Keywords: randomization, oversampling, spectrum, low-pass filter, LPF, noise, Nyquist crite-
rion.

Introduction. The usual method for restoring a continuous signal from the sequence of
discrete samples is the use of the low-pass filter (LPF), which significantly suppresses fre-
quencies higher than half the sampling rate (Nyquist criterion). Ideally, such filter should be
based on the function sinc(x) = sin(x)/x. However, real filters may use an approximation to this
function, implemented in the digital region after the oversampling of the input signal, usually
by an integer factor. In this case, a much simpler analog LPF can be installed after the output
of the DAC. For the reproduction of bitmap images with a monitor or a printer, this final low-
pass filtering indeed takes place during the direct observation of the image, thanks to the finite
spatial resolution of the eye [1]. Thus, the period of the pixel lattice of the restored image
should be sufficiently smaller than the limit of visual acuity at the particular observation dis-
tance.

For the usual observation conditions, this boundary may vary from 0,072 mm to 0,25-
0,28 mm. An accepted resolution for printed bitmap images should be at least 300 dpi. The
oversampling of the input image is required in all cases where the density of pixels in it is
insufficient to fulfill this condition. Therefore, various interpolation algorithms are used. How-
ever, the interpolation of higher orders (for example, bicubic) or filters which approximating
the function sinc(x) (for example, Lanczos) is not an universal method because of the possibil-
ity of creating visual artifacts such as extra contours that impair visual perception of the image
and can complicate its analysis. Therefore, it is expedient to create an oversampling algorithm
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of signals or images in which the final error would be similar to random noise and did not
differ from the additive noise that is already necessarily present.

Experimental model

The signal sampling model under studies consists of two stages.

At the first stage, the definition area is divided by a given number of intervals n. The
number of intervals is determined based on [2] and was calculated by the formula n = 2N,
where N is a positive integer number. In the second stage, each interval was divided into an
odd number of samples m, which determines the instant value of the signal sample. The opti-
mal number of samples was determined experimentally in order to provide a sufficient level of
quality of the restored signal. Values of the sampled signal in each interval were determined as
the arithmetic mean of all samples in this interval:

1 m
A =— ..

The time parameter for this value was determined depending on the sampling mode:

- regular - the sample value corresponds to the central subsample in this interval.

- irregular - the sample value is placed randomly within the permissible deviation range.
The limits of the deviation range are determined based on the randomization coefficient rela-
tive to the central sample of the interval. Thus, the random distribution, or jitter, is forcibly
introduced into a regular distribution of interpolation nodes. This jitter is always present in the
real processes of regular sampling of signals in the time area as result of the instability of the
time scale of the clock generator and the position of the pulse fronts. It leads to the additional
error of the discrete representation of the analog signal, so it is usually considered undesirable
and the most signal processing systems minimize it [2]. On the one side, the additive noise that
blurs the least significant bits of ADC resolution increases the quantization error and reduces
the dynamic range of the data collection system. On the other side, this noise is a very power-
ful tool for converting nonlinear distortions related to the quantization error of low-level sig-
nals.

This two-stage model also allows one to determine the optimal parameters for restoring a
signal with given accuracy more efficiently. Otherwise, this approach is closer to the physical
principles of signal measurement, since any device adds some delay in the process of signal
sampling.

Experimental results. The restoration of the signal by its discrete values was carried out
using several types of interpolation: nearest-neighbor, linear, and cubic.

For the exploration, we chose a simple sinusoidal signal y = sin(x) (Fig. 1) because it
meets the requirements, and also has well-known characteristics that ensure the authenticity of
checking its recovery. In addition, we considered the case of restoring a real signal coming
from the physical system and in which there is a random noise, which called the dither. This
noise must be necessarily added to signal to be sampled to reduce distortion of the quantization
of low-amplitude signals [3]. One period of the sinusoidal signal was sampled, being divided
into n = 128 intervals, each of which consisted of 65 samples.
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Fig. 1. The original signal y = sin(x).

The results of restoring the original signal with nearest neighbor, linear and cubic interpo-
lations are shown on Fig. 2, 3, and 4, respectively. For restoring of the original signal with
irregular sampling, we considered two cases with a randomization radius of 0,17 (Fig. 5-6) and
0,35 (Fig. 7-8). To modeling a real signal with random noise, the original signal y = sin(x) was
used, which was distorted by a slight random noise.
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Fig. 2. Fragment of the Fourier spectrum of the nearest-neighbor interpolation of the original signal.
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Fig. 3. Fragment of the Fourier spectrum of the linear interpolation of the original signal.
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Fig. 4. Fragment of the Fourier spectrum of the cubic interpolation of the original signal.
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Fig. 5. Fragment of the Fourier spectrum of linear interpolation of a randomized signal with a
randomization radius of 0,17.
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Fig. 6. Fragment of the Fourier spectrum of cubic interpolation of a randomized signal with a randomiza-
tion radius of 0,17.

45

40

35

30

25

0 20 40 60 a0 100 120

Fig. 7. Fragment of the Fourier spectrum of linear interpolation of a randomized signal with a
randomization radius of 0,35.
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Fig. 8. Fragment of the Fourier spectrum of cubic interpolation of a randomized signal with a randomiza-
tion radius of 0,35.
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For the numerical evaluation of the results of the signal restoration, the squared differ-
ence between the original signal and the restored was calculated. Based on the received data,
the total restoration error (see Table 1) and the maximum deviation of the restored signal (see
Table 2) were calculated.

The results obtained reveal an increase of the error of restoring the original signal in the
cases of randomization usage and also allow estimating the influence of the randomization
radius on increasing the restoration error. Nevertheless, the relative changes in the restoration
error indicate that the methods for signal restoration with randomization are less sensitive to
the random noise what is present in the original signal. Furthermore, slight change of the
maximum deviation of the restored signal (see Table 2) allows asserting that, even if the resto-
ration error is increasing in the case of randomization usage, this error is random and largely
blurs in the all domain of the restored signal. With the regular interpolation, we have an in-
verse case: the restoration error distributes only in the certain areas which are different for each
interpolation method. The only exception was the maximum deviation of the signal restored
using cubic interpolation with a randomization radius of 0.35, but this case can be explained by
oscillations which appeared at the restored signal and are clearly shown on the Fourier spec-
trum (see Fig. 8).

Table 1.
Restoration error of the original signal.
Method of the signal restora- | The presence of random noise in | Relative change of the
tion the original signal restoration error
Without noise With noise
Regular nearest-neighbor 0,82618 0,841126 1,018
interpolation
Regular linear interpolation 0,005711 0,015391 2,695
Regular cubic interpolation 0,004349 0,015596 3,586
Linear interpolation with a 0,022387 0,032527 1,453
randomization radius of 0,17
Cubic interpolation with a 0,025457 0,03611 1,419
randomization radius of 0,17
Linear interpolation with a 0,057032 0,087196 1,529
randomization radius of 0,35
Cubic interpolation with a 0,072392 0,111122 1,535
randomization radius of 0,35
Linear interpolation with a 0,126756 0,137172 1,082
randomization radius of 0,50
Cubic interpolation with a 0,177568 0,20043 1,129
randomization radius of 0,50
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Table 2.
The maximum deviation of the restored signal.
Method of the signal restoration The presence of random noise in the original signal
Without noise With noise
Regular nearest-neighbor inter- 0,000625 0,000729
polation
Regular linear interpolation 0,000004 0,000016
Regular cubic interpolation 0,000001 0,000016

Linear interpolation with a ran- 0,000025 0,000025
domization radius of 0,17

Cubic interpolation with a ran- 0,000036 0,000036
domization radius of 0,17

Linear interpolation with a ran- 0,000064 0,000081
domization radius of 0,35

Cubic interpolation with a ran- 0,000064 0,0001
domization radius of 0,35

Linear interpolation with a ran- 0,000144 0,000169
domization radius of 0,50

Cubic interpolation with a ran- 0,000169 0,000256
domization radius of 0,50

Conclusion. The results reveal the conversion of the reproduction error depending on the
selected parameters of the sampling. The nature of the error has changed and become more
noise-like after the randomization. In the case of real signals with random noise, the randomi-
zation resulted in redistributing the error and decreasing the effects of random noise. However,
randomization requires fine tuning, as the larger radius of randomization can create additional
defects and increase the error significantly.
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OmnucaHo XapakTep MepeTBOPEHHs CHEKTPa BiJHOBJICHOTO CHIHANY BHACIIIOK PEryJsipHOL i
HeperyJspHoi Auckperu3auii. SIk METOA BiJHOBIICHHS CUTHATY PO3TJSIHYTO TPH IHTEPIOJSLINHI
METOJH Pi3HOTO MOPSIKY: CXig4acTe iHTEPIIONIOBaHHS, a00 IHTEPIOIIOBAHHI METOIOM HalOIu-
JKYOTO Cycifa, JIiHiHA IHTepHosLis Ta KyOiuHa iHTeprnossiis. BUukopuctanHs pi3HUX METOIIB
BiJIHOBJICHHSI JIQJI0 3MOTY HE JIMIIE MEpPEeBIPUTH SIKICTh BiJHOBJICHHS CUTHANLY, a W JOCHIAUTH
BIUTHB paH/oMi3allii Ha METOH BiHOBJICHHS, a TAKOXK Ha IOSIBY Pi3HOMAHITHUX Ie(eKTiB, TAKHUX
sk eexT a3BoHA uM ocumsiLii. HeperysspHy AMCKpeTH3aLiio po3ristHYTO SIK METOJ TpaHcdop-
Malii cekTpa MoXUOKH BiJIHOBJICHOTO CHI'HAJy 3 KOTEPEHTHOTO B LIyMOBHH, 110 A€ 3MOTy 3Me-
HILIHUTH NMOPAAOK BUXIAHOTO (inbTpa HU3BKUX 4acTOT abo, y NESKUX BHIIAJKaX, H030yTHCs iforo
CYMICHO 3 Ha/IUCKPETU3ALIEI0 CUTHATY, 10 BiJHOBIIOEThCs. HalilikaBilluM NpUKIagoM 3acTo-
CyBaHHSI TAKMX METOJIB MO)Ke OyTH BiATBOpEHHs L(poBOro pactpoBoro 300pakeHHs. OpHaK
33Ul CHPOLICHHSA NPOOJIEMH PO3MIIHYTO OJHOBUMIPHHMIH BHIIAJIOK, a JUIS BiJHOBJICHHS B3STO
MPOCTHH CHHYCOIZaNbHUN CHTHAI, II0 A€ 3MOTY TOYHO OLIHUTH Pe3yJbTaTh BiAHOBIEHHsS. Po3-
[VISIHYTO BUIAIOK BiTHOBIJICHHSI i[I€albHOTO JOCIIDKYBaHOTO CHTHATy Oe3 LIyMiB i CIIOTBOPEHb, a
TAaKOX BIJJHOBJICHHS JIOCIIiZXKyBaHOTO CUTHAJY, y SKOMY HasBHUH BUIaaKoBuii mym — pitep. Ta-
KU IIyM XapakTepHUi ajst O611bmIocti Gi3ndHUX CHCTEM 1 MOXKE 3HAYHOIO MipOI0 BIUIMBATH HA
SIKICTh BIJHOBJICHHs curHaiay. Ha mifcTaBi OTpUMaHHX AaHUX BHKOHAHO OOYMCIICHHS MOXUOKH
BIZIHOBJICHHSI CUT'HAJly Ta MAaKCHMAJIbHOTO BIIIXHJICHHS BiJIHOBJIEHOI'O CHI'HAILY, SIKi JAIOTh 3MOTY
OLIIHUTH TOYHICTh BiTHOBJICHHS CHTHANy B pa3i BUKOPUCTaHHS PEryJSIPHOI i HeperyJsipHol auc-
Kperusawii Ta JeMOHCTPYIOTh TpaHC(HOPMALil0 KOrepeHTHOI MOXMOKH BiJHOBJICHHS CHIHAIY Yy
myMononioHy. Takox NpoJeMOHCTPOBAHO 3MCHILICHHS HEraTUBHOTO BIUIMBY BHIIAJKOBOIO LIY-
My, 110 MOXe OyTH HasiBHHI y BXiZIHOMY CUTHaJIi, Ha IIPOLIEC BiJHOBJICHHS CUTHAIY.

Kniouogi cnosa: panpomizaiisi, HaIAUCKPETU3ALls, CIEKTP, QUIBTP HU3BKHX YacTOT, LIyM,
kpurepiit HaiikBicra.



