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In this work, we study the use of logistic regression in manufacturing failures detection. As a
data set for the analysis, we used the data from Kaggle competition “Bosch Production Line
Performance”. We considered the use of machine learning, linear and Bayesian models. For
machine learning approach, we analyzed XGBoost tree based classifier to obtain high scored
classification. Using the generalized linear model for logistic regression makes it possible to
analyze the influence of the factors under study. The Bayesian approach for logistic regression
gives the statistical distribution for the parameters of the model. It can be useful in the
probabilistic analysis, e.g. risk assessment.
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Introduction

It is important to monitor closely the manufacturing parts, as they progress through the
manufacturing processes. Bosch records data at every step along its assembly lines. They have
the ability to apply advanced analytics to improve these manufacturing processes. However,
the intricacies of the data and complexities of the production line pose some problems for
current methods. In the Kaggle competition “Bosch Production Line Performance”[1], Bosch is
challenging Kagglers to predict internal failures using thousands of measurements and tests
made for each component along the assembly line. This would enable Bosch to bring quality
products at lower costs to the end user. The peculiarity of this competition is that the
classification classes are highly imbalanced. The task of internal failures prediction can be
considered as a kind of logistic regression problem. Classifications are evaluated using
Matthews correlation coefficient (MCC) between the predicted and the observed response. The
MCC is given by

(TP-TN)- FP-FN

MCC =
J(TP+ FPYTP+FN)(TN + FP)(IN + FN)

where TP is the number of true positives, TN is the number of true negatives, FP is the number
of false positives, and FN is the number of false negatives. The data for this competition
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represents the measurements of parts, as they move through Bosch's production lines. Each part
has a unique Id. The goal is to predict which parts will fail quality control (represented by a
Response=1). The data set contains an extremely large number of anonymized features. The
goal of this study is to consider different approaches for time manufacturing parts of internal
failure modeling. Machine learning algorithms make it possible to find patterns in the data.
This approach can give high precision in the logistic regression. We can define the importance
of each feature but it cannot give us any information about the influence of each factor. The
combination of parametric and non-parametric models can give us more complete analysis with
complimentary approaches. As parametric models, we can consider the generalized linear
model for logistic regression. Given the features in the analyzed data sets are anonymized, we
can consider the internal failures prediction as a stochastic process. If we have sales
distribution, we can calculate the value at risk (VaR), which is one of risk assessment features.
To find distributions of model parameters Bayesian inference approach can be used.

Machine learning model

For machine learning approach, we used a gradient boosting classification method
implemented in the XGBoost classifier. To perform the analysis, we used R package “xgboost”
(short term for eXtreme Gradient Boosting) which is an efficient and scalable implementation
of gradient boosting framework [2,3,4]. The package includes efficient linear model solver and
a tree-learning algorithm. Our first step was to prepare our data. We merged data frames with
numeric, categorical, and date features. We also constructed a new feature denoting the time at
which the part was on the manufacturing line. We calculated this feature as the difference
between minimum and maximum time in the date features sets. Taking into account the large
amount of the data set, we used the undersampling approach for logistic regression with highly
imbalanced classes. We retain the samples with positive response 1 without changes but the
number of samples with negative response 0 was reduced essentially using random sampling.
For categorical features, one-hot encoding was used. To the data set, obtained in such a way,
we applied the XGBoost classifier. The total number of features was more than 4000. We
defined the most important features by applying XGBoost classifier to the small subset of the
whole training set. For our next investigation, we took 500 top most important features. For the
validation data set, we took 25% of training data set samples. The results of the classification
were the probability for positive responses. Fig. 1 shows the most important features and their
gain values. Fig.2 shows the ROC curve for the classification results. Calculated AUC is 0.753.
To get the binary values of response, we need to apply a threshold for received probabilities. If
the probability is larger than the threshold, then the response takes on the value 1, otherwise the
value is 0. Fig. 3 shows Matthews correlation coefficient for the logistic regression for different
values of the threshold. Fig.4 shows the Matthews correlation coefficient for the subsets of
samples received by undersampling. The results have slight differences for different samples
subsets which can be taken into account on the second level, using probabilistic Bayesian
model.
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Fig.1. The most important features and their gain values.
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Fig.2. ROC curve for classification results
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Fig.3. Matthews correlation coefficient for logistic regression for different values
of probability threshold.

So-called magic features which are based on the ID of samples were considered by
competition participants [5,6]. These features improved scoring essentially. We took the magic
features presented in the competition forum post [7] and calculated ROC curve (Fig.5) and
Matthews correlation coefficient (Fig.6) for different features sets. Features set 2 is the features
set 1 with added magic features. For features set 2, we received AUC=0.91.
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Fig.4. Matthews correlation coefficient for different samples sets.
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Fig.6. Matthews correlation coefficient for different sets of features.

Generalized linear model

Logistic regression can be considered as a special case of generalized linear model. Such
type of logistic regression enables us to investigate the influence of numeric factors on the
binary response. For this model, we can receive the coefficients for each feature under study.
The data set under consideration has a large number of not available measure values (NA) for
each sample. It is not a big problem for modern machine learning classifiers but when we try to
apply the linear logistic regression, we need to preprocess the data to avoid NA values in the
data set. The possible reason of such a large number of NA values is that in the data set, there
are the manufacturing parts of different types. For one type of the parts, one set of measures is
applied for quality controlling, for the other type of the parts, the other set of measures is
applied. Taking into account that all measure features in the data set are represented as
columns, the measures, which are not applied to some part, will have NA value. So, at first in
the linear analysis, we need to group the parts by their types. Grouping can be performed by
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clusterization. Since the features in the data set are anonymized, we used only numeric features
to study the possibility of applying the generalized linear logistic regression for this data set.
We used the k-mean algorithm for the clusterization. We set up the value 0 for not available
values of features in the data sets and value 1 for the features with numeric values of measure.
To speed up the calculation, we chose 850 random features. Fig.7 shows the dependency of
total within-clusters sum of squares from the number of clusters. The results show that the
optimal number of groups of the parts is approximately 20-30.
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Fig.7. Total within-clusters sum of square from number of clusters.

We took the value 25 for the number of clusters. For the linear regression, we took
the parts from one arbitrary cluster only. We removed the columns where there were
more than 10% of NA values. We also removed the rows with more than 10% of NA
values. The rest NA values were replaced by median value, calculated for appropriate
numeric features. For the linear logistic regression, we used R package “glmnet”
[8,9,10,11]. We used the logistic regression with LASSO regularization. The glmnet
algorithms use cyclical coordinate descent, which optimizes successively the objective
function over each parameter with the others fixed, and cycles repeatedly until the
convergence [8]. Let us denote the probability that if the response is 1 by p;. then the
probability that the response is 0 will be p,=/-p;. For the logistic regression, we can
write

log{ﬂj =B, +B"x

Po
_exp(By +BTx)
1+exp(B, + B’ x)
The coefficients B, B’ can be found via minimizing the appropriate objective function.

1

To find the optimal value for regularizing the Lambda parameter, we used the cross validation
approach. Fig.8 shows the dependence of logarithmic value of Lambda from AUC value. The
axis above indicates the number of nonzero coefficients for current Lambda, which is the
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effective degree of freedom for the LASSO model. Having this dependence, we can find the
optimal value of regularization parameter, under which we can receive the best fitting.
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Fig.8. Dependence of Lambda from AUC value.

Using Lambda=0.03, we calculated nonzero coefficients of the generalized linear model
for logistic regression which is shown on Fig.9.
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Fig.9. Coefficients of the generalized linear model for logistic regression.

Fig. 10 shows the histograms, correlation coefficients, pairs scatterplots for some chosen
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features. This figure shows the character of dependencies between these features.
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Fig.10. Histograms, correlation coefficients, pairs scatterplots for features.

Bayesian model

For Bayesian model, we took the features which were found in the generalized linear
model using LASSO regularization. The analysis was conducted using JAGS sampler software
with “rjags” R package [12,13]. For modeling, we used the logistic regression. The idea is that
a linear combination of metric predictors is mapped to the probability value via the logistic
function, and the predicted 0 and 1 are Bernoulli distributed [12]. We can describe logistic
regression as

p = Logistic(b, +bx, +b,x, +..b,x,),
y ~ Bernulli(p),
1

here Logisti =
A ogistic(x) (Tt oxp(—x)
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The simple probabilistic model for logistic regression using BUGS syntax has the
following code:

model{
for (iin 1:n) {
yli] ~ dbern(pl[i])
logit(p[i]) <- bO+inprod(b[ 1,x[i,])
§
b0 ~ dnorm(0,0.0001)
for (j in 1:nfeat) {
b[j] ~ dnorm(0,0.0001)
}
}

Trace plots of samples vs the simulation index can be very useful in convergence
assessment. Fig.11 shows the trace plot for b0 parameter of logistic model.
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Fig. 11. Trace plot for Intercept parameter.

The trace plot demonstrates the stationary process, which means good convergence. Fig.
12 shows the probability density distributions for Intercept (b0) parameter.
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Fig.12. Density of distributions for Intercept parameter.

Fig.13 shows the examples for box plots for some logistic regression coefficients. The
points on the figure denote the values of coefficients calculated using generalized linear model
without regularization (Lambda=0) which was applied to the same features as in the case of
Bayesian model.
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Fig.13. Box plots for logistic regression coefficients.

As the case study shows, the use of Bayesian approach allows us to model stochastic
dependencies between different factors and receive the distributions for model parameters.
Such an approach can be useful for assessing different risks related to quality control problems.
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Combining machine learning with linear and bayesian models

One of the effective approaches of machine learning classification and regression is
stacking, when predictions of models on one level are used as features for models on the next
level. Using multilevel models with stacking approach is very popular among the participants
of Kaggle competitions. The team where I was a participant used such an approach on the
Kaggle competition Gruppo Bimbo Inventory Demand which we won. One can find our first
place solution on that competition at [14]. Combining machine learning models and linear or
Bayesian models on different levels can give us improved results for logistic regression. Fig.
14 shows a diagram of such possible multilevel model. On the first level, there are different
XGBoost classifiers with different sets of features and subsets of samples, on the second level,
probabilities predicted on the first level can be blended with appropriate weights using linear or
Bayesian regression.

Bayesian
Model

Level 2

XGBoost XGBoost XGBoost
Level | Parameters Set | Parameters Set i Parameters Set n
Samples Set 1 Samples Set j Samples Set m

Fig.14. Logistic regression with machine learning models on the first
level and linear and Bayesian models on the second level.

Let us consider the use of generalized linear model for logistic regression with
independent variables which are the probabilities predicted by XGBoost models on the first
levels. We used different sets of parameters for 3 XGBoost models, they are - set 1: max.depth
=15, colsample_bytree = 0.7; set 2: max.depth = 5, colsample_bytree = 0.7; set 3: max.depth =
15, colsample bytree = 0.3. For these 3 models, we used the same subset of samples. Fig.15,
16 show the dependence of Matthews correlation coefficient from a probability threshold for
different subsets of features, where features set 2 is features set 1 with 4 added magic features,
mentioned above. For Bayesian models, we used the same 3 subsets of parameters with
different subsets of samples. As it was shown above, for different samples subsets, we received
slightly different results for Matthews correlation coefficient (Fig.6). These differences can be
taken into account while using Bayesian model. We used Bayesian model for logistic
regression, as covariates we used the probabilities predicted for three XGBoost models and
for 3 different subsets of samples. Fig.17 shows the density of distributions for coefficients of
probabilities predicted by different XGBoost models. Fig.18 shows boxplots for these
coefficients.
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Fig.17. Density of distributions for coefficients of probabilities predicted by different XGBoost models.
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Fig.18. Boxplots for coefficients of probabilities predicted by different XGBoost models.

Study of Reliability of Parts

One of the possible usages of measurements from manufacturing assembly line is the
prediction of working lifetime for parts and devices. We did not have such historical data for
the lifetime of working parts, so we tried to simulate such an approach. The working lifetime
of parts can be described by Weibull distribution

ro-4e] ]

Let us suppose that we have 3 measurements, which can be used for predicting the
lifetime of some part. Suppose the scale parameter ¢ of Weibull distribution has the linear
dependence from these measurements:

o =b,+bx, +b,x, +bx;.

The parameters of this model can be found using the data e.g. from the repair centers.
Having id# of broken parts, their lifetime and their measurements on the manufacturing line,
one can study the possibility to predict the distribution of lifetime for these parts using
measurements from the manufacturing line as predictors. We simulated the Weibull
distribution with arbitrary chosen parameters of the model. Fig. 18 shows such simulated
Weibull distribution. Then the received data were used as input data for Bayesian logistic
regression. Fig.20 shows the density for the B parameter of Weibull distribution and boxplots
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for the coefficients of Bayessian logistic regression model. Having these distributions, one can
find the distribution for the lifetime of parts under study. Of course, these are only the
simulation results. Having real data, this approach can be effective, combining the machine
learning model on the first level and probabilistic Bayesian model on the second level.
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Fig.19. Simulated Weibull distribution
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Fig.20. Density for B parameter of Weibull distribution and boxplots for coefficients of Bayesian
logistic regression model.

Conclusion

In our case study, we showed different approaches for the logistic regression in the issue
of manufacturing failures detection. Machine learning approach can give us the best-scored
failure detection. The generalized linear model for the logistic regression makes it possible to
investigate influence factors on the failure detection in the groups of manufacturing parts.
Using Bayesian model, it is possible to receive the statistical distribution of model parameters,
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which can be used in the risk assessment analysis. Using 2-level models, we can receive more
precise results. Using Bayesian model on the second level with the covariates that are the
probabilities predicted by machine learning models on the first level, makes it possible to take
into account the differences in results for machine learning models received for different sets
of parameters and subsets of samples in case of highly imbalanced classes.
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BUKOPUCTAHHSI MAIIMHHOTI'O HABYAHHSI, JIITHIMHOI TA BAMECIBCBKOI
MO/IEJIEM JJOT'ICTUYHOI PEI'PECIi Y BUSIBJIEHHI TEXHIYHHAX BIJIMOB
HA JIIHISIX BUPOBHHMI[TBA

b. M. I[1aBaunienko

Jlveiecokutl nayionanvHull yHieepcumem imeni leana @panka,
eyn. [Ipacomanosa 50, 79005 Jlvsis, Ykpaina
b.pavlyshenko@gmail.com

VYV poGOTi pO3risiHyTO BHKOPHUCTAHHS JIOTICTMYHOI perpecii y 3ajadax aHamizy BiJMOB Ha
BUpOOHMUKX JiHisAX 30ipku. Kommnanis Bosch 3ailicHIOE MOHITOPHHI TEXHOJOTIYHHX MPOLECIB
30ipku Ha cBOiX BHpOOHMITBax. OIHAK, MPOLECH MOHITOPHHTY Ta aHAN3y OTPUMAaHHX JaHHUX €
IOCUTh CKJIAQAHUMH. TOMy KOMIIaHisS 3amponoHyBala TaKWH aHami3 sk 3MmaraHsi ‘‘Bosch
Production Line Performance” na cneniamizoBaniii miardopmi Kaggle, ska opraHizoBye
3MaraHHs cepeq (axiBHmiB 3 aHaNi3y AaHMX. Y I[bOMY 3MaraHHi OyJIO ITOCTaBJIEHE 3aBJaHHSI
CIIPOTHO3YBAaTH BIIIMOBH Ha JIiHisIX 30ipku kommanii Bosch, BukopucToByroun aHOHIMI30BaHi 1aHi
pI3HOMaHITHHX BHMIpIOBaHb Ta TecTiB. OcoONMBICTIO mOCTaBieHOi 3amadi Oysia BHCOKa
He30aJaHCOBaHICTh KiaciB. Y MacuBi 3ampoNOHOBAaHUX JO aHajidy jJaHux Oymu  pisHi
BUMIPIOBaHHS CKJIaJ0OBHX YaCTHH Y TEXHOJIOTTYHOMY ITpOLeCi iX MPOXOKEHHS Ha JIHIAX 30ipKH.
Linp monsirac y mpOrHO3yBaHHI TOTO, SIKA CKIAJ0Ba YAaCTHHA HE MpPOWAE KOHTPOJIb SKOCTI.
[apamerpuyni MeToAM JiHIHHOI perpecii Ta HemapaMmeTPUYHI METOAM Ha OCHOBI MAIIMHHOTO
HAaBYaHHS Jal0Th MOXIIHBICTh MPOBECTH B3a€MOIONOBHIOBAJIBHMII aHAN3 perpeciiiHoi 3agadi
MIPOTHO3YBaHHS TEXHIYHHUX BiJ]MOB Ha BUPOOHHYHX JIHISX 30ipKH.

Y po6oTi po3rIIsIHYTO MOJICIi MAIIUHHOTO HABYAHHS, JIIHIITHI MOJei Ta GaifeciBChbki MOJIeIi.
VY migxoni Ha OCHOBI MANTMHHOTO HABYaHHS PO3MsHYTO anroputM XGBoost Ha OCHOBI JepeB
MPUIHATTS pillieHb, sKUi 3a0e3nedye BHUCOKY TOYHICTh HPOTHO3YBAaHHI. BHKOpUCTaHHS
y3arajbHeHOl JiHIIHOT MOoJieNi ISl JIOTiCTUYHOI perpecii 1ae MOXKJIMBICTh IPOAHaNi3yBaTH BILTUB
pizHUX (hakTOpiB HAa TEXHIYHI BiAMOBH Ha IiHifAX 30ipku. balieciBChKMA MiaXid A0 JIOTICTUYHOL
perpecii ga€ MOXJIHMBICTH OTPUMATH CTATUCTHYHI PO3MOIIIN IS MapaMeTpiB MOJEII, 0 MOXKE
OyTH KOPUCHUM JUI IMOBIpHICHOTO aHaJIi3y, 30KpeMa, B 33/1adax OLIHKH PU3UKIB. 3aCTOCOBYIOUH
JIBOPIBHEBY CTCKIHFOBY MOJENb, MOXXHAa OTPUMATH TOYHIII pe3yibTaTd. BHKOpUCTaHHS
OaifeciBcbkOi MOJIeJli Ha JPYromy piBHI CTEKIHIOBOI MOZENi Ja€ MOXJIMBICTB PO3paxyBaTH
HWMOBIpHICHI PO3MOIUIN ISl POTHO3YBaHHS, a TaKOX BpaxyBaTH BiAMIHHOCTI B pe3yJibTaTax
MoieNiell MalIMHHOTO HAaBYaHHS, 3yMOBJICHHUX Pi3HUMH NapaMeTpaMu MOZEIICH.

Kniouoei cnosa: norictudna perpecis, anroputm XGBoost, 6aiieciBcbka perpecis, BUSIBICHHS
TEXHIYHUX BIIMOB.

Cmamms: nadituna 0o pedaxyii  27.09.2019,
doonpayvosara  02.10.2019,
npuiinama oo opyky  04.10.2019.



