Hybrid delineation of landforms: Case of Bystrytsia-Pidbuzka drainage basin

Ivan Kruhlov, Anatoliy Smaliychuk, Yurii Svatko

Анотація


Landforms, together with geological substrate and geomorphic processes, are essential for delineation of geoecosystems, which are indispensable for environmental management at landscape and regional levels. Geomorphometry is a geographic information system technology, which affords quantitative land-surface analysis and landform delineation using digital elevation models (DEM). Application of geomorphometry has been fostered by the emergence of free global high-resolution DEMs. However, automated geomorphometric extraction of landforms for flat areas, like wide river valleys, may be problematic owing to insufficient accuracy of the DEM.

We selected the Bystrytsia-Pidbuzka drainage basin of 500 km², which has a transitional location between low flysch External Carpathian Mountains and wavy denudation-alluvial plains of the Fore-Carpathian Upland in Lviv Oblast (Ukraine), to test a hybrid methodology of landform delineation – manual and automated geomorphometric. We considered regional landforms as orotectonic units (morphostructures), which are used to characterize ecoregions, and morpholithotopes as the smallest local landforms – mesorelief elements together with surface deposits and current geomorphic processes. FABDEM V1-2 with a resolution of 30*30 m was used as a primary geodataset of elevation data. Ecoregions and morpholithotopes of wide flat valley bottoms were delineated via manual interpretation of the DEM and ancillary data, while the morpholithotopes of the hilly and mountainous interfluves were delineated automatedly using three topographic variables: topographic position index, slope, and flow accumulation.

Within the study area, we singled-out six microecoregions and four mesoecoregions: Upper Dnister Depression, Upper Dnister Upland, Marginal Beskydy, and Dnister Beskydy. There are 21 classes of morpholithotopes distinguished belonging to flat valley bottoms with alluvial and lacustrine deposits, narrow valleys and big gullies, as well as lower concave and upper convex slopes formed by colluvial and eluvial-colluvial deposits respectively, divided into four inclination categories, and two lithological groups. Each morpholithotope class is attributed with a drainage status and probable current geomorphic processes. The obtained dataset is oriented on further ecological application.

Key words: morpholithotope; ecoregion; geomorphometry; FABDEM; the Carpathian Mountains; the Fore-Carpathian Upland.


Повний текст:

PDF (English)

Посилання


Bastian O., Beierkuhnlein C., Klink H.-J. et al. Landscape structures and processes // Development and perspectives of landscape ecology. Dordrecht : Springer, 2002. P. 49–112.

De Reu J., Bourgeois J., Bats M. et al. Application of the topographic position index to heterogeneous landscapes // Geomorphology. 2013. Vol 186. P. 39–49. https://doi.org/10.1016/j.geomorph.2012.12.015

DHS (Derzhavna Heolohichna Sluzhba). Derzhavna heolohichna karta Ukrainy. Masshtab 1:200000. Heolohichna karta i karta korysnykh kopalyn chetvertynnykh vidkladiv. 2009. (In Ukrainian.)

Grunty Lvivskoi oblasti : kolektyvna monohrafia / Za red. S.P. Pozniaka. Lviv : LNU im. I. Franka, 2021. 424 s. (In Ukrainian.)

Haggett P., Chorley R.J., Stoddart D.R. Scale standards in geographical research: A new measure of areal magnitude // Nature. 1965. № 4974. P. 844–847.

Hawker L., Uhe P., Paulo L. et al. A 30 m global map of elevation with forests and buildings removed // Environmental Research Letters. 2022. Vol. 17. P. 024016. https://doi.org/10.1088/1748-9326/ac4d4f

Hopkins K.G., Ahmed L., Claggett P.R. et al. Mapping stream and floodplain geomorphometry with the Floodplain and Channel Evaluation Tool // JAWRA Journal of the American Water Resources Association. 2024. Vol. 60. P. 480–498. https://doi.org/10.1111/1752-1688.13163

Huhmann M., Kremenetski K.V., Hiller A., Brückner H. Late quaternary landscape evolution of the upper Dnister valley, western Ukraine // Palaeogeography, Palaeoclimatology, Palaeoecology. 2004. Vol. 209. P. 51–71. https://doi.org/10.1016/j.palaeo.2004.02.014

Kravchuk Ya.S. Relief Ukrainskykh Karpat: Monohrafia. Lviv : LNU im. I. Franka, 2021. 576 s. (In Ukrainian.)

Kruhlov I. Transdystcyplinarna heoekolohia: Monohrafia. Lviv : LNU im. I. Franka, 2020. 292 s. (In Ukrainian.)

Kruhlov I., Mukha B., Senchyna B. Natural geoecosystems of the Upper Dnister Basin // Transformation processes in the Western Ukraine: Concepts for a sustainable land use. Berlin : Weißensee-Verlag, 2008. P. 81–97.

Landry G., Thiffault E., Cyr D. et al. Mitigation potential of ecosystem-based forest management under climate change: A case study in the boreal-temperate forest ecotone // Forests. 2021. Vol. 12. P. 1667. https://doi.org/10.3390/f12121667

Meadows M., Jones S., Reinke K. Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments // International Journal of Digital Earth. 2024. Vol 17. P. 2308734. https://doi.org/10.1080/17538947.2024.2308734

Minár J., Drăguţ L., Evans I.S. et al. Physical geomorphometry for elementary land surface segmentation and digital geomorphological mapping // Earth-Science Reviews. 2024. Vol. 248. P. 104631. https://doi.org/10.1016/j.earscirev.2023.104631

Mukha B. Landshaftna karta Lvivskoi oblasti masshtabu 1:200 000 // Visnyk Lvivskoho Universytetu. Seriya Heohrafichna. 2003. Vyp. 29. S. 58–65. (In Ukrainian.)

Neitsch S.L., Arnold J.G., Kiniry J.R. et al. Soil and Water Assessment Tool theoretical documentation. Version 2009. Texas Water Resources Institute, 2011. 648 p.

Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Köppen-Geiger climate classification // Hydrology and Earth System Sciences. 2007. Vol. 11. P. 1633–1644. 1644. https://doi.org/10.5194/hess-11-1633-2007

Pennock D.J., Zebarth B.J., De Jong E. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada // Geoderma. 1987. Vol. 40. P. 297–315. https://doi.org/10.1016/0016-7061(87)90040-1

Shuber P. Klimat // Lvivska oblast: pryrodni umovy ta resursy: Monohrafiya. Lviv : Vydavnytstvo Staroho Leva, 2018. C. 157–188.

Terrain classification system for British Columbia (Version 2) / Ed. by D.E. Howes, E. Kenk. Victoria, B.C., 1997. 114 p.

Transformation processes in the Western Ukraine: Concepts for a sustainable land use / Ed. by Roth M., Nobis R., Stetsiuk V., Kruhlov I. Berlin : Weißensee-Verlag, 2008. 602 p.

Xiong L., Li S., Tang G., Strobl J. Geomorphometry and terrain analysis: data, methods, platforms and applications // Earth-Science Reviews. 2022. Vol. 233. P. 104191. https://doi.org/10.1016/j.earscirev.2022.104191

Yatsyshyn A. Heomorfolohichna budova peredkarpatskoi dilianky dolyny Bystrytsi-Pidbuzkoi // Visnyk Lvivskoho Universytetu. Seriya Heohrafichna. 2016. Vyp. 50. S. 395–411. (In Ukrainian.)




DOI: http://dx.doi.org/10.30970/gpc.2024.2.4563

Посилання

  • Поки немає зовнішніх посилань.