Single crystal investigation of the new phase $Er_{0.85}Co_{4.31}Si$ and of CoSi

Pavlo DEMCHENKO¹*, Joanna KOŃCZYK², Oksana BODAK^{1,2}, Roman MATVIJISHYN¹, Lilija MURATOVA³, Bernard MARCINIAK²

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

² Institute of Chemistry and Environment Protection, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland

³ Department of Chemistry, Lviv Medical Training University, Pekarska St. 32, 79005 Lviv, Ukraine

* Corresponding author. Tel.: +38 32 2394 506; e-mail: demchenko@franko.lviv.ua

Received December 21, 2007; accepted February 17, 2008; available on-line March 31, 2008

The crystal structure of the new phase $\text{Er}_{0.85}\text{Co}_{4.31}\text{Si}$ was determined by single-crystal X-ray diffraction (46 unique reflections, R1 = 0.0378, wR2 = 0.0697). The compound crystallizes in the TbCu₇ structure type: space group *P6/mmm*, *hP8*-1.85, with lattice parameters *a* = 4.8593(19), *c* = 3.9869(16) Å. A full investigation of the crystal structure was also performed for the known phase CoSi on single-crystal X-ray diffraction data (61 unique reflections, R1 = 0.0256, wR2 = 0.0548). CoSi crystallizes in the FeSi structure type: space group *P2*₁3, *cP8*, with lattice parameter *a* = 4.4500(5) Å.

Transition metal alloys and compounds / Crystal structure / X-ray diffraction

Introduction

This paper is part of a systematic study of the interaction of erbium and transition metals with silicon or germanium. The Er-Co-Si ternary system has not been completely investigated yet, but eight ternary compounds have been found to exist: tetragonal ErCo₂Si₂ [1-4] and ErCo₉Si₂ [5], ErCoSi [6,7], orthorhombic ErCoSi₂ [6,8,9] and Er₂Co₃Si₅ [10], monoclinic Er₂CoSi₂ [11], Er₅Co₄Si₁₄ ("Er₃Co₂Si₇") [6,12] and Er₃CoSi₃ [13]. Ouite recently, the other new ternary phase, ErCo₅Si₃, was found and its crystal structure has been determined by X-ray single crystal method [14]. The solubility of silicon in the binary Er₂Co₁₇ phase was studied in [15]. According to the accepted phase diagram of the Er-Co system [16], a hexagonal phase of composition ErCo₅ (structure type CaCu₅) exists in a limited temperature range; it forms peritectically at 1340°C and decomposes eutectoidally at 1240°C. It seemed of interest to study the influence of a third component on the formation and stability of this hexagonal phase.

The existence of the compound CoSi was firstly reported in [17], but a complete investigation of the crystal structure has not been performed. During our systematic studies of the Er–Co–Si system several single crystals were grown. This work presents the results of the X-ray investigation of single crystals of the new phase $Er_{0.85}Co_{4.31}Si$ and of the known phase CoSi.

Experimental

Single crystals of prismatic form were extracted from samples of compositions Er₁₆Co₆₉Si₁₅ and Er₅Co₄₇Si₄₈. The samples were melted from pieces of initial components of high purity (Er 99.86%, Co 99.99%, Si 99.999%) under an argon atmosphere (Ti-getter) in an arc furnace with a water-cooled copper crucible, and annealed in evacuated silica tubes at 800°C for 1 month. The single crystals suitable for X-ray analysis were at a preliminary step investigated by the Laue and Weissenberg methods (RKV-86 and RGNS-2 chambers, MoK α -radiation), then on an automatic single-crystal diffractometer (Oxford Diffraction Xcalibur3TM CCD, MoKα-radiation, graphite monochromator, ω -scans). Data collection and reduction were performed using CrysAlis CCD [18] and CrysAlis RED [19] programs. The crystal structures were solved and refined using the SHELX-97 program package [20]. The crystallographic data were standardized with the program Structure Tidy [21]. Experimental and crystallographic data are given in Table 1.

Kyryla i Mejoaiya St. 0, 79003 Lviv, Ukraine

Results and discussion

The structure of Er_{0.85}Co_{4.31}Si was solved by direct methods. The first step of the solution of the structure revealed the atomic positions of the CaCu₅ structure type. However, the differential Fourier map contained additional electron density of about 13 e/Å³ at 0 0 0.297 that is typical for the TbCu₇ structure type. After having included this peak into the atom list and applied the restraint $G(Er)+G(Co_1) = 1$, the atomic parameters were refined in the anisotropic approximation down to R = 0.0378. The final values are listed in Table 2. The structure is characterized by strong disorder (about 65%), typical of the representatives of the TbCu₇ structure type.

A clinographic projection of the unit cell of $Er_{0.85}Co_{4.31}Si$ is shown in Fig. 1.

Fig. 1 Clinographic projection of the unit cell of Er_{0.85}Co_{4.31}Si (TbCu₇-type structure) with displacement ellipsoids.

Compound	$Er_{0.85(2)}Co_{4.31(7)}Si_{0.99(6)}$	CoSi
Structure type	TbCu ₇	FeSi
Space group	P6/mmm	$P2_{1}3^{a}$
Z, Pearson symbol	1, hP8-1.85	4, cP8
Lattice parameters, Å	a = 4.8593(19) c = 3.9869(16)	a = 4.4500(5)
Crystal size, mm	$0.10 \times 0.08 \times 0.05$	$0.14 \times 0.08 \times 0.04$
Crystal color	Metallic d	lark grey
Absorption coefficient, mm ⁻¹	45.444	9.805
Absorption correction	Analy	rtical
θ range for data collection	4.83 to 25.16°	6.48 to 25.47°
Limiting indices	$5 \le h \le 5, -5 \le k \le 4, -4 \le l \le 4$	$-5 \le h \le 4, -5 \le k \le 5, -5 \le l \le 5$
Reflections collected/unique	455 / 46 [R(int) = 0.1648]	533 / 61 [R(int) = 0.1582]
Completeness to θ	100.0 % ^b	100.0 %
Refinement method	Full-matrix leas	t-squares on F^2
Data/restraints/parameters	46 / 1 / 16	61 / 0 / 8
Goodness-of-fit on F ²	1.124	1.214
Final R indices [I>2sigma(I)]	R1 = 0.0378, $wR2 = 0.0697$	R1 = 0.0256, wR2 = 0.0548
R indices (all data)	R1 = 0.0416, $wR2 = 0.0709$	R1 = 0.0256, wR2 = 0.0548
Extinction coefficient	0.09(3)	0.010(18)
Largest diff. peak and hole	0.980 and -1.861 e Å ⁻³	0.713 and -0.667 e $Å^{-3}$

Table 1 Experimental and crystallographic data for Er_{0.85}Co_{4.31}Si and CoSi.

^a Absolute structure parameter -0.02(10).

^b Transformed from an initial orthorhombic cell (a = 3.9869(16), b = 4.8578(19), c = 8.4211(35) Å).

	~.				Displacement parameters ^a , $Å^2 \times 10^3$						
Atom	Site	x	У	z	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{12}	G	
Er	1 <i>a</i>	0	0	0	18(1)	18(2)	18(2)	18(3)	9(1)	0.85(2)	
Co ₁	2e	0	0	0.288(8)	21(12)	- ^b	-	-	_	0.15(2)	
(Co,Si) ₂	2c	1/3	2/3	0	31(3)	44(3)	44(3)	5(3)	22(2)	G(Co) = 0.85(7)	
										G(Si) = 0.15(7)	
(Co,Si) ₃	3g	1/2	0	1/2	16(2)	16(2)	14(3)	17(2)	7(1)	G(Co) = 0.77(5)	
										G(Si) = 0.23(5)	

Table 2 Atomic positional and displacement parameters for $Er_{0.85}Co_{4.31}Si$.

 a U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \mathbf{a}^{*2} U_{11} + ... + 2hk \mathbf{a}^{*} \mathbf{b}^{*} U_{12}], U_{13} = U_{23} = 0, U_{12} = U_{22}/2.$ ^b Anisotropic displacements were not refined.

Atoms	δ, Å	Atoms	δ, Å	
$Er - 2Co_1$	1.148(32) ^a	$(Co,Si)_2 - 6(Co,Si)_3$	2.4375(7)	
$- 6(Co,Si)_2$	2.8055(11)	- 3(Co,Si) ₂	2.8055(11)	
$-2Co_1$	2.839(32)	– 3Er	2.8055(11)	
- 12(Co,Si) ₃	3.1428(9)	$(Co,Si)_3 - 4(Co,Si)_3$	2.4297(9)	
– 2Er	3.9869(16)	$-4(Co,Si)_2$	2.4375(7)	
$Co_1 - Er$	1.148(32) ^a	$-4 \operatorname{Co}_1$	2.57(1)	
$-Co_1$	1.690(45) ^a	-4Er	3.1428(9)	
$-Co_1$	2.296(45)			
- 6(Co,Si) ₃	2.57(1)			
-Er	2.839(32)			
- 6(Co,Si) ₂	3.031(12)			

Table 3 Interatomic distances for Er_{0.85}Co_{4.31}Si.

^a These distances do not realize physically.

Table 4 Atomic positional and displacement parameters for CoSi.

Atom S	0:44	x	у	z	Displacement parameters ^a , $Å^2 \times 10^3$		
	Site				$U_{ m eq}$	$U_{11} = U_{22} = U_{33}$	$U_{23} = U_{13} = U_{12}$
Co	4 <i>a</i>	0.3934(1)	0.3934(1)	0.3934(1)	5(1)	5(1)	0(1)
Si	4a	0.0935(3)	0.0935(3)	0.0935(3)	6(1)	6(1)	1(1)

^a U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \mathbf{a}^{*2} U_{11} + ... + 2hk \mathbf{a}^{*} \mathbf{b}^{*} U_{12}]$

Table 5 Interatomic distances and coordination numbers (C.N.) for CoSi.

Atoms		δ, Å	C.N.	Atoms	δ, Å	C.N.
Co -	- Si	2.312(3)	13	Si – Co	2.312(3)	13
-	3Si	2.3431(18)		- 3Co	2.3431(18)	
_	3Si	2.4514(10)		- 3Co	2.4514(10)	
- 6	бCo	2.7349(3)		– 6Si	2.7538(7)	

According to the results of the refinement of the occupation factor *G*, 15% of the Er atoms that could occupy position 1*a* are replaced by Co-Co dumb-bells in position 2*e*. The structure contains three types of net, emphasized in Fig. 2: a 6^3 net formed by $(Co,Si)_2$ atoms in 2*c*, a 3636 (Kagomé) net formed by $(Co,Si)_3$ atoms in 3*g*, and a 3[°] net formed by Er atoms in 1*a* (the latter being in part replaced by Co₁ atoms). The interatomic distances are in good agreement with the sums of the atomic radii of the elements [22] and are listed in Table 3.

The structure of CoSi was also solved by direct methods; the atomic parameters and interatomic distances are presented in Tables 4 and 5, respectively. A projection of the unit cell content of this compound, which adopts the cubic FeSi structure type, and the coordination polyhedrons of the two kinds of atom are shown in Fig. 3. For the cobalt as for the silicon atoms, the coordination polyhedrons have 13 apexes $[CoSi_7Co_6]$ and $[SiCo_7Si_6]$.

Fig. 2 6^3 net formed by $(Co,Si)_2$ atoms in the 2c-site, 3636 net (Kagomé) formed by $(Co,Si)_3$ atoms in the 3g-site and 3^6 net formed by Er atoms in the 1a-site (G = 0.85; in part replaced by Co_1 atoms in the 2e-site with G = 0.15).

Fig. 3 Clinographic projection of the unit cell of CoSi (FeSi-type structure) and coordination polyhedra of the atoms: a) 13-apex polyhedron [CoSi₇Co₆], b) 13-apex polyhedron [SiCo₇Si₆].

Conclusions

Full X-ray single crystal investigations have been carried out for the new compound $Er_{0.85}Co_{4.31}Si$ in the ternary Er–Co–Si system and for the known compound CoSi. As a next step, it would be interesting to investigate the homogeneity range, temperature interval of existence and structural changes of the hexagonal phase $Er_{1-x}(Co_{1-y}Si_y)_{5+2x}$.

References

- D. Rossi, R. Marazza, R. Ferro, J. Less-Common Met. 58 (1978) 203-207.
- [2] J. Leciejewicz, M. Kolenda, A. Szytula, Solid State Commun. 45 (1983) 145-148.
- [3] J.K. Yakinthos, C. Routsi, P. Schobinger-Papamantellos, J. Magn. Magn. Mater. 45 (1983) 149-152.
- [4] P. Demchenko, J. Kończyk, O. Bodak, B. Marciniak, R. Matvijishyn, Acta Crystallogr. E 61 (2005) i218-i220.

- [5] F. Pourarian, S.K. Malik, E.B. Boltich, S.G. Sankar, W.E. Wallace, *IEEE Trans. Magn.* 25(5) (1989) 3315-3317
- [6] V.I. Yarovets', *Ph.D. thesis*, Ivan Franko State University of Lviv, 1979.
- [7] A.E. Dwight, P.P. Vaishnava, C.W. Kimball, J.L. Matykiewicz, J. Less-Common Met. 119 (1986) 319-326.
- [8] M. Pelizzone, H.F. Braun, J. Müller, J. Magn. Magn. Mater. 30 (1982) 33-36.
- [9] G. André, F. Bourée, A. Oles, W. Sikora, M. Kolenda, A. Szytula, J. Magn. Magn. Mater. 124 (1993) 69-74.
- [10] Yu.K. Gorelenko, R.V. Skolozdra, Ya.I. Dutcak, V.I. Yarovets', I.D. Shcherba, O.I. Bodak, *Ukr. Fiz. Zh. (Ukr. Ed.)* 30(2) (1985) 301-304.
- [11] F. Merlo, M. Pani, M.L. Fornasini, J. Alloys Compd. 372 (2004) 80-87.
- [12] J.R. Salvador, C. Malliakas, J.R. Gour, M.G. Kanatzidis, *Chem. Mater.* 17(7) (2005) 1636-1645.
- [13] F. Merlo, M.L. Fornasini, M. Pani, J. Alloys Compd. 387 (2005) 165-171.
- [14] R. Matvijishyn, V. Pavlyuk, B. Marciniak, E. Różycka-Sokołowska, Coll. Abstr. X Int. Conf. Cryst. Chem. Intermet. Compd., Lviv, 2005, p. 134.
- [15] L. Zhang, D.C. Zeng, Y.N. Liang, J.C.P. Klaasse, E. Bruck, Z.Y. Liu, F.R. de Boer, K.H.J. Buschow, J. Magn. Magn. Mater. 214 (2000) 31-36.
- [16] H. Okamoto, *Desk Handbook: Phase Diagrams* for Binary Alloys, ASM International, Materials Park, Ohio, 2000.
- [17] B. Borén, Ark. Kemi Mineral. Geol. 11A(10) (1933) 1-28.
- [18] Oxford Diffraction, CrysAlis CCD, Version 1.170, Oxford Diffraction Ltd., Abingdon, Oxford, England, 2003.
- [19] Oxford Diffraction, CrysAlis RED, Version 1.171, Oxford Diffraction Ltd., Abingdon, Oxford, England, 2005.
- [20] G.M. Sheldrick, *SHELXS97 and SHELXL97*, *WinGX Version, Release 97-2*, Univ. Göttingen, Germany, 1997.
- [21] L.M. Gelato, E. Parthé, J. Appl. Crystallogr. 20 (1987) 139-143.
- [22] J. Emsley, *The Elements*, 2nd Ed., Clarendon Press, Oxford, 1991.

Proceeding of the IX International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, September 20-24, 2005.