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Different models of electron energy for GaSe are considered for the purpose of deriving thermodynamic 
functions for an electron gas at low and high temperatures. Their common features and differences are 
pointed out and their agreement with existing data is analyzed. The results show cases where the two models 
are equivalent. We also show conditions at which they yield different results and therefore peculiarities of the 
chemical bonding are to be taken into consideration. 
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1. Introduction 
 
We have considered two simulations of the electron 
energy as a function of the quasi-momentum: the 
parabolic one, typical of isotropic semiconductors, and 
the Fivaz one, which was introduced in [1,2] for 
layered semiconductors with specific chemical 
bonding in one of the crystallographic directions. 
Using parameters known for GaSe we find the 
thermodynamic functions for an electron gas and 
compare them for both high (quasi-classical) and low 
(Fermi gas) temperatures. This enables us to identify 
the cases where a parabolic dependence of the energy 
on the quasi-momentum (which is appreciable for 
many particle interaction problems due to its 
simplicity) can also be used for layered 
semiconductors. 
 For Fivaz’ model we analyzed the dependences  
of the thermodynamic functions on parameters  
that can be affected by intercalation or pressure, as 
well as the transition from closed to open energy 
surfaces. 
 
 
2. Thermodynamic functions for a quasi-classical 
electron gas 
 
We consider a quasi-classical electron gas when 

θ
µ

e << 1 (µ denotes the chemical potential, θ = kT, 
where T – the temperature of the sample, k – the 
Boltzmann constant). 
 In [3], the statistical sum for such a gas was 
expressed as follows: 
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which is very similar to the modified Bessel functions. 
In (2) V denotes the crystal volume (1 cm3), Lz the 
thickness of the sample (1 cm), d the crystal cell 
constant in the [001] direction, mt the effective mass 
of electrons in the layer [4], γ denotes the parameter 
introduced in [1,2] for the energy dependence: 

)cos(1)( 2 zkkE −+= ⊥ γα  with 0 < z < π, (4) 

( )tm/ 22
ℏ=α , ( )yx k,kk =⊥ – quasi-momentum of an 

electron in the plane of the layer, ''dkz z= , kz – quasi-

momentum of an electron in the direction normal to 
the plane. We use the expression for the 
thermodynamic potential for a quasi-classical electron 
gas from [5]:  
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where p denotes pressure, V volume, and N the 
number of particles. 
 After using (4) in (5), the expressions for the 
thermodynamic potential and entropy become: 
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 Expressions from the well known dependences of 
the energies and statistical sum (1) (see for example 
[6,7]) are considered for the electron gas energy and 
specific heat. Using (1) we found them to be: 
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We analyzed the temperature dependences of the 
thermodynamic functions (6) and (7) and compared 
them with the well known parabolic dependence [5-7] 
for an electron gas, using GaSe parameters. 
Comparing these investigations in the temperature 
range 250-550 K we conclude that: a) the electron gas 
energy shows similar values for both dependences – 
the largest relative divergence of the energies is 2.1 %, 
which occurs at 550 K; b) the specific heat differs 
slightly more in this temperature range and shows a 
relative divergence within the range 1.7 % for 250 K 
and 5.1 % for 550 K; c) the thermodynamic potentials 
differ significantly – almost over the whole 
temperature range we observe about 30 % higher 
absolute values of Ω for the parabolic spectrum 
(typical of isotropic semiconductors) – this difference 
is explained by the chemical bonding in layered 
semiconductors; but both functions show nearly the 
same increase with increasing temperature: d) the 
entropy shows anomalously small differences for both 
models; the relative divergence decreases from  
1.1·10-4 % at 250 K to 3.7·10-5 % at 550 K.  
 This enables us to conclude that the dependences 
of the thermodynamic functions on temperature are 
quite similar for both models as long as we deal with a 
quasi-classical gas. 
 Intercalation – i.e. introducing of other ions and 
molecules into interlayer space – is typical of layered 
semiconductor technology and is widely used in 
material science of such crystals [8-10]. Intercalation 
makes it possible to introduce a new generation of 
energy storage devices. 
 It has been shown that in many cases intercalation 
increases the interlayer distance without introducing 
new chemical bonding between the matrix and the 
intercalated molecules. For example, in [11] it is 
shown that strong intercalation of organic molecules 
into TiS2 and PbI2 increases the interlayer distances to 
54 Å and 66.56 Å. In [12] intercalation is suggested to 
affect the electron spectrum by decreasing γ in (4). A 
change of γ can also be noticed by submitting the 
samples to pressure [13]. Using (6) and (7), we found 
the dependence of the thermodynamic functions of a 

quasi-classical electron gas on this parameter. The γ 
dependences of the electron energy and specific heat 
are shown in Fig. 1 and Fig. 2. 
 The non monotonic character of these functions 
can be seen from Fig. 1 and Fig. 2. They show 
transitions from closed to open energy surfaces, which 
are known as Lifshitz transitions in layered crystals 
[14-16]. As we see from Fig. 1, the open energy 
surfaces are more strongly affected by changing γ  
than the closed ones. This is in good agreement with 
the results of [13], where optical and structural 
examinations together with band investigations were 
carried out for samples of GaSe under pressure. It is 
shown in [13] that the bands with small dispersion 
along the [001] direction are much more affected by 
pressure than the bands for which energy is strongly 
dependent on kZ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Electron gas energy as a function of γ for 
different temperatures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Specific heat as a function of γ for 
different temperatures. 
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3. Thermodynamic functions for a Fermi gas in a 
layered structure 
 
To find the thermodynamic functions for an electron 
gas at low temperature with energy dependence on the 
quasi-momentum (4), the statistical weight, 
thermodynamic potential and energy can be expressed 
as [5]: 
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Using (1) we found the thermodynamic potential [17]: 

( )

( )
















=Ω−









≤−

+











++−







≥











++−

γµµγµγµ

γθγµ

γµγθγµ

2if)-(2)(
2

3
23

)(π

2ifπ
23

)(π

0

22
2

22
2

2

,

x

,

A
 (9) 

and the entropy: 
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The electron energy looks as: 

( )

( )

;2if

,2ifπ

2
23

π
)(

)(
2

3

2

)(3
2)(

)(2
)(

-)(
3

)(π
)2)((

2

2

22
2

0

0
2

2

0

2

γµ

γµ
λµµ

γθγµ

µµµµγµ

µ
µγµ

µθµγ

≤





















≥
















−

+−+−−



























+






 −−

+







+−

+−








= ,

,

K
K

x

x
K

LxL

A
U

 (11) 

where ( ) ( ) ( ) )(20 µγµµ
µ

µµ −=






 += K,x
K

L  

and the specific heat: 





≥
≤

⋅=
γµ
γµθ

2ifπ,

;2if,

3
π

2

2

LkA
C  (12) 

Having examined the temperature dependences of the 
thermodynamic functions (9)-(12) in the range  
4 K < T < 100 K and having compared them with the 
well known functions for weakly anisotropic crystals 
in [5-7] we came to the following conclusions: 1) the 
absolute values of the thermodynamic potential, 
entropy, energy and heat capacity for isotropic crystals 
are larger for isotropic crystals than for anisotropic 
crystals, both for closed and open energy surfaces;  
2) the thermodynamic potential and energy of electron 
gas depend stronger on the temperature for closed 

energy surfaces than for open ones, while their 
derivatives (entropy and specific heat) exhibit stronger 
changes for open surfaces than for closed ones. 
 As it is seen in (9)-(12) the transition from closed 
to open energy surfaces depends on the correlation 
between γ  and µ.: when µ. increases we move from 
closed to open energy surfaces and from a 
semiconductor to a conductor. The dependences of the 
thermodynamic functions on  µ are shown in 
Figs. 3-6. 
 As it follows from Fig. 3, for some combinations 
of parameters in layered crystals, a small region  
(Ω(µ) > 0) of negative volume expansion coefficient 
appears. This agrees with the results of [18], where a 
negative value of the linear expansion coefficient is 
shown. The authors of [18,19] explain this 
phenomenon by bending waves, which are typical of 
phonon spectra of layered crystals. But in [20] no 
bending wave was found for GaSe. For some closed 
energy surfaces, atypical correlations are observed 
between the electron energy for isotropic crystals 
(usually larger) and the electron energy for layered 
crystals (usually smaller). They can be explained by 
comparing the densities of states [21], which show an 
area of electron frequencies where the density is larger 
for strongly anisotropic crystals than for isotropic 
crystals. The results of [21] could explain in a 
satisfactory way the anomalous increase of the 
absorption coefficient for some frequencies, as 
reported for GaSe [21],  In6S7 [22], and BiTeI [23]. 
 Fig. 5 shows the independence of the entropy with 
respect to µ (or the electron concentration) in the case 
of open energy surfaces. This observation agrees with 
[24], where a two-dimensional electron gas was 
considered. Fig. 6 shows the typical dependence of 
specific heat on µ, which is known as Lifshitz 
transition [14-16]. 
 
 
Conclusions 
 
The comparison of the thermodynamic values for 
isotropic and strongly anisotropic (layered) crystals 
showed the following characteristics. 
For a quasi-classical gas:  
– The temperature dependences are very similar in the 
two cases – in layered crystals a parabolic energy 
dependence on the quasi-momentum can be used as 
long as the investigator cares about the temperature 
dependence and is sure that there is no physical effect 
on γ (due to intercalation or pressure).  
– A decrease of γ leads to opening of energy surfaces, 
which can be noticed on the electron energy and 
specific heat.  
– The energy of a quasi–two-dimensional system 
depends stronger on γ than the energy of a three-
dimensional system. 
For a Fermi gas: 
– The absolute values of the thermodynamic potential, 
entropy, energy and heat capacity are larger for 
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isotropic crystals than for anisotropic crystals, both for 
closed and open energy surfaces.  
– The thermodynamic potential and energy of electron 
gas depend stronger on the temperature for closed 
energy surfaces than for open ones, while their 
derivatives (entropy and specific heat) exhibit stronger 
changes for open surfaces than for closed ones. 
– For particular combinations of parameters the 
thermodynamic potential of layered crystals shows a 
region of negative volume restriction coefficient. 
– The energy of electron gas in layered crystals can, 
for some combinations of parameters, be larger than 
the energy of an isotropic electron gas. 
– The entropy of a quasi–two-dimensional gas does 
not depend on the electron concentration. 
– The specific heat shows a phase transition from 
open to closed energy surfaces, known as a Lifshitz 
phase transition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Dependence of the thermodynamic 
potential on µ for Т = 11.6 K; Ω1 – isotropic 
crystals; Ω2 – layered crystals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Dependence of the electron energy on µ 
for Т = 11.6 K; U1 – isotropic crystals;  
U2 – layered crystals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Dependence of the entropy on µ for  
Т = 11.6 K; S1 – isotropic crystals; S2 – layered 
crystals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Dependence of the specific heat on µ for 
Т = 11.6 K; Cv1 – isotropic crystals;  
Cv2 – layered crystals. 
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