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A model describing the thermodynamic properties o superconducting phase in the presence of a pseug@dp
induced by local charge density waves is presentad the paper. Within the framework of the model
calculations it is shown that the obtained phase dgram reproduces properly, in a qualitative way, tke phase
diagram of the superconducting state for BaPh,BixOs. It is further shown that the pseudogap very strogly

reduces the value of the order parameter for the qaerconducting phase, whereas the value of the elemt

effective mass and the energy shift function are dependent of the pseudogap.

Superconductors / Thermodynamic properties

I. Introduction superconducting phase quickly disappears. Secondly,
the classical Eliashberg theory describes a physica
The BaPh,Bi,O; (BPBO) superconductor was for the  system that can exist in the metallic state orha t
first time synthesized by Sleiglat al. in 1975[1]. superconducting state. The phase diagram obtagred f
Due to the fact that the superconducting phase in BPBO proves, however, that this compound can exist
BPBO is induced by electron-phonon interaction, the in three distinct states: metallic, superconductng
thermodynamic properties of the described compound semiconducting10].
were in the literature tentatively explained withire
framework of the classical Eliashberg formaligivb]

(for a discussion of the Eliashberg equations, E\l
originally formulated by G.M. Eliashbef§], we refer o

to [6]). In our opinion, there are strong arguments .
against the correctness of such a procedure. &irst
all, the classical Eliashberg theory predicts a \ . . .
completely different phase diagram for the 00 0.2 04 X 08 08 1.0

superconducting phase than the one observed for the Metallic o

BPBO superconductor. The phase diagram predicted ‘g’ 9

by the Eliashberg theory and the diagram obseroed f £ rg
BPBO[9,10] are presented schematicallyFfig. 1 It £ S

is easy to spot the great qualitative differences © =

between these diagrams. From the considerations 02 04 x 06 08 10

made within the framework of the classical Eliashbe (Biin BaPb, B0 BaBiO,
theory it is inferred that the superconducting ghas Fig. 1 (A) Phase diagram predicted by the
exists in the whole range of theparameter and the classical Eliashberg theory [9]. (B)
critical temperature takes the highest value far th Experimentally determined phase diagram for
half-filled electronic band. However, in the phase BPBO [10]. In both figuresT. denotes the
diagram for BPBO it can be clearly seen that the critical temperature;x~(ny was assumed,
maximum value of the critical temperature is obedrv where(n) is the average number of electrons at

for x O 03 (¢max O 13K) and then the the node.
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The complicated structure of the phase diagram for
BPBO can be understood based on the results obtaine
for pure BaBiQ (BBO) [11-14], X-ray absorption fine
structure (XAFS) measurementd5] and optical
reflectivity measurements 7,19] It has been shown
experimentally that the BBO compound is not a good
metal with a half-filled electronic band, but itilsthe
semiconducting state. The reason for this is direct
connected with the existence of static charge ¢ensi
waves in BBO, which are induced by a Peierls’
instability [20]. The XAFS measurements have
additionally proven that, with decreasing Bi comten

operator. The functiorg, defines the electronic band
energyu is the chemical potential, and, determines

the phonon energy with the momentum g. The matrix
elements that describe the electron-phonon interact
are denoted by the symlmgli.q.

The electronic band structure is modeled by a
threedimensional band with the nearest neighbor
hopping integralt; & = -2 [cosk,) + cosk) +
cosky)]. In the presented model the electron density of
states function was approximated by a constant
density of states at the Fermi surfa%6). In this case

and increasing Pb content, the charge density waves »0) = 1/(2w), whereW is the half band width;
are the subject of constant weakening, which means yy = &. In the numerical calculations we takas an

that doping by lead destroys the long-range order
CDW in BPBO. The peak in the optical conductivity
versusfrequencyi.e. the optical energy gap, behaves
in an analogous way. The optical gap does not faanis
not even at the transition from the superconducting
state to the metallic statex£ 0.35), but is still
observed in the metallic state (0.X< 0.35), where a

pseudogap was detected. The presented experimental

results explicitly suggest that the pseudogap @\ th
electron density of states is connected with the
existence of local charge density waves, the resnain
of the static CDW observed in pure BBO.

Taking into consideration the conclusions from the
quoted facts, it has to be stated that the pragsedf
the superconducting phase in BPBO should be
described within the framework of an essentially
modified Eliashberg theory. An adequate model, in

energy unit.
In order to bring out the Eliashberg equations, th
Frohlich hamiltonian should be rewritten with theeu

of the Nambu spinorg, , (//II [4]:

vis [cfil ] v =(el o) @
Then:
H= Z(fk O +Za)qb;rbq

‘ i 3)

+ Z gk,k+q\|’l+qt3“’k (b:rq + bQ)
kq

wheret; is one of the four Pauli matrices:Ts.
The new form of the Frohlich hamiltonian enables
us to bring out the Dyson equation, which can keglus

which it has been assumed that the superconducting to calculate the matrix self—energi Wliowg):

state is induced by electron-phonon interactiontaed
pseudogap in the electron density of states is
connected with the existence of local charge dgnsit
waves, is proposed in the present paper.

Il. The model

In the simplest case the coupling between therelect
gas and the vibrations of the crystal lattice isciéed
by the Frohlich hamiltoniaf?]:

H= Z(gk - p)clfcckc + qubgbq
ko q

t t
+ z g k,k+qu+qaCkc (b—q + bq)
kgo

1)

where ¢/ denotes the electron annihilation (creation)
operator in the Bloch state with the momentum k and
spin o; bg is the phonon annihilation (creation)

| Wy To + (5k ‘H)Ts

D k(iop) = Gi(ioy) -Gy iy, 4)
In Eq. 4 G, (iw,,) is the electronic Green function
for the gas of the non-interacting electrons:
Gox (i @Whn) = (i@t = (& ~WT3)™ (5)
whereasG, (iw,,) denotes the full electronic Green
function:
(e 168 Wiag, (g, 14 iy,
Tt T
<<C-kl |CkT >>|a+ﬂ <<C-kl |C-kl >>|a+ﬂ
The Matsubara frequencies are defined by the famul
wn= (TWB)(2m-1), where S is the inverted
temperature; 8= (kgT)™, ks is the Boltzmann
constant.
The pseudogap in the electron density of states
was introduced into the Eliashberg formalism by
renormalization of the Green functio®, (ics,) in

the Dyson equation:

Gy (i) = (6)

Gox(icn) — Gol' (i) =~ + (6~ )2 +[GN]2
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In Eq.7 (n) stands for the average number of
electrons at the node(c is the maximum width
of the pseudogap. It is easy to notice that thehwid

the pseudogap for a fixed number of electrons is
defined by the producG(n). On the other hand,
the depth of the pseudogap is defined by the terms
(ny and 1<n) that appear in the numerators in
Eqg. 7. In the analyzed model, the pseudogap isedtep
and widest for the half-filled electronic band.
In the case of the BPBO superconductor the proeedur
of the parametric description of the pseudogap
postulated in EQ.7 can be motivated by the

M
2 =1+@1/322K‘ (LM)Zpy + Fie (M) - L Dic(m)

k m=1

M
11 == 3 K (MR (& — ) + 2] DM
e}

M
#i= 522 K LMD
k

m=1

) =1-/232 > IR (M)(Ex — 1) + Xm]DZA(M)
k m=-o0
where:

Dy (M) = [ (Zy + Fie (M) 1)1 +[Fi (M)(&yc = ) + Xm]* + 81

In Egs. 8-117 =Z(iw,) denotes the wave function
renormalization factory, =x(iw;) stands for the energy
shift function, ¢ =¢ (iw)) for the order parameter
function. Let us notice that in the Eliashberg
formalism, the order parameter for the
superconducting phas& =A(iw)) is defined by the
ratio ¢ / Z, . The functionsK* (I,m) were defined by
the following expression:

KE(Lbm) =K@ -m)+K(1+m-1) (13)
whereK (I-m) is the pairing kernel:

I 2a°F(Q)Q
K(-m=| gt (14)

The symbolo®F(Q) in Eq. 14 denotes the Eliashberg
function. The calculation of the Eliashberg funatio
from first principles for BPBO is a very difficulisk.
For this reason the pairing kern&(l - m) was
simplified according to the procedure proposed by
Kresin[23]:

V2
(1 -m?+v2

where v=p4, 12m, w,

K(I-m)=x (15)

is the Debye phonon

frequency andA is the electron-phonon coupling

function; XEZJ- ooanzF(Q)/Q. In the numerical
0
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experimental results presented ifil0], where

it has been shown that the size of the pseudogap
increases with increasing average number of elestro

at the node. It is also worth noting that the
presented model qualitatively reproduces the
dependence of the pseudogap on the average number
of electrons at the node that was calculated
numerically in[22].

The set of Eliashberg equations with the
pseudogap was brought out in the usual, self-
consistent way[5-7]. The following results were
obtained:

(8)
9)
(10)

(11)

(12)

calculationsap = 1.5 and A = 2t were assumed. It
needs to be mentioned that the application of Kigsi
approximation causes a presentation of only
qualitative results in the paper.

Taking into consideration the presence of a
pseudogap leads to the appearance of Fen)
function in the Eliashberg equations:

w + (& ) +G(M]°
W+ (& = ) +[L- (WG]
The F(m) function has a complicated structure
because it depends on the energy value, as welh as
the Matsubara frequency. In the proposed model the

F«(m) function will be approximated by its value on
the Fermi surface:

Fi(m) = (16)

2

ZTRICL) a7
o +[L=(MIIG(N)]

Additionally, the numerical analysis of the
Eliashberg equations can be significantly simpdifie
when the sums over momenta are replaced by the
integrals over energies. The obtained integralsilsho
then be calculated analytically. The details of the
procedure are given below:

Fe(m) = F(m) =

Chem. Met. Alloyd (2011)
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305 (m =600, (s = A(m)

and

S IR (M) ey =)+ XnlDG (M) = p(O)[  [F (M) (e = 1)+ X ] ()l = B(m)

k
where

A(m) = p(O)Rl(Xm ~ F) 4 [@n(Zoy + F () -1 + ¢$,F(m))

B(m) = p(O)RZ(Xm ~ FM)[@n(Zoy + F () -DF + ¢§1-F(m))

(18)

(19)

(20)

(21)

The functiondR}; andR,; are defined by the following expressions:

+ j—
Ry (Xq, %5, %X3) = 1{arcTarE)%le] + arcTarEMH
XoX3 X2 X2

R, (X1, X5, %3) Eiln

OQW +%)% + %5
2Xg

OQW = %)% + %5

I1l. Numerical results

A. Influence of the width of the pseudogap on the
values of theg, Z andy functions

A numerical analysis of the Eliashberg equations wa
conducted for four hundred Matsubara frequencies
(M = 400);ksT = 107t and(n) = 0.7 was assumed.

The dependence of the order parameter function on
the Matsubara frequency for the selected valueS of
is presented ifrig. 2a It can be noticed that the order
parameter function decreases with increasing
maximum width of the pseudogap. This fact can be
easily explained when remembering that the
pseudogap always opens itself on the Fermi surface
and the G(n) product defines the width of the
pseudogap. Thus, when the value of Gi@arameter

(22)

(23)

function that renormalizes the chemical potentiak
also worth noticing that, like the order parameter
function, theZ, and x;, functions take their extreme
values fom = 1.

B. Dependence of thg Z, y andu functions onh)

In the present subchapter the dependence of the
solutions of the Eliashberg equations on the awerag
number of electrons at the node is analyzed. The
dependence is far more complicated in the
investigated model than in the classical Eliashberg
theory, due to the fact that both the width andtle
the pseudogap are parameterizedry

In Fig. 3athe dependence of tlgg, function on the
Matsubara frequency for selected values (0f is
presented. Identical values for the maximum width o

increases, the width of the pseudogap increases asthe pseudogap and temperatu®, = 10°% and
well and, as a consequence, the number of electrons kT = 10%, were assumed. When analyzing the

that are able to form Cooper pairs near the Fermi

presented results it was concluded that with an

surface must decrease. The presented results alsoincrease of the average number of the electrotiseat

prove that the ¢, function always reaches its
maximum form= 1, independently of the assumed
value of theG parameter.

Figs. 2band2c show the dependence of the wave
function renormalization factor and energy shift on
successive Matsubara frequencigd= 10% was
assumed. Only one value of tl& parameter was
selected, because it has been stated th&,tlaed x;,
functions do not depend on the width of the
pseudogap. In the Eliashberg formalism, thAg

function describes the electron effective mass, )

whereas they;, function renormalizes the value of the
chemical potential. On the basis of the results
presented irfrigs. 2band2cit has to be concluded that
the change of width of the pseudogap in the elactro
density of states does not have any influence en th
electron effective mass value and does not chamge t

Chem. Met. Alloyd (2011)

node, theg,, function first increasegrf) = 0.2 andn)

= 0.4), and then begins to decreaée) £ 0.6 and
(ny = 0.8). It may be noticed that the behavior of the
function ¢y, is totally different from the one predicted
by the classical Eliashberg theoryG € 0).
The dependence of the order parameter function on
the average number of electrons at the node wittan
framework of the classical formalism was analyzed i
[9]. It was shown there that the values of
the ¢, function increase with increasing values of the
parameter (n). The unusual dependence of
the ¢, function on(n) is connected with the fact that
with increasing values of the(n) parameter,
the number of electronic states near the Fermi
surface initially increases and then begins to ekese,
due to the increase of the width and depth of the
pseudogap.
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Fig. 2 (A) Dependence of the,, function on
the Matsubara frequency for selected values of
the G parameter. (B) Dependence of tHg
function and (C)y;, function on the Matsubara
frequency foiG = 10°.
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Fig. 3 (A) Dependence of the,, function, (B)

Z, function and (C) x, function on the
Matsubara frequency for selected values of the
average number of electrons at the ndde
G=10%and kT = 10° were assumed.

The wave function renormalization factor and
energy shift as a function of the Matsubara fregyen
for the selected values of th@) parameter are
presented irFigs. 3band3c. As beforeG = 10°% and
ksT = 10°% were assumed. It can be noticed that the
values of the wave function renormalization factod
of the energy shift function increase with incregsi
values of the(n) parameter. The presented result
proves that the existence of the pseudogap in the
electron density of states does not change the
dependence of thg,, and x;, functions on{n), when
compared to the results obtained when the analysis
based on the classical Eliashberg equatighs
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The dependence of the order parameter, wave
function renormalization factor, and the energyftshi
on the average number of electrons at the noddean
fully investigated by analyzing the behavior of ¢ho
functions for the first Matsubara frequency.

The most relevant result achieved in the work is
presented irFig. 4 it is the dependence of thi,-;
function on(n) for selected values of the parameter.

On the basis of the presented results, it has sieted
that, with the increase of th& parameter, the
superconducting phase vanishes from the side of the
high values ofn). In particular, for the case in which
the maximum width of the pseudogap is equal to two
and a half-fold value of the considered temperature
the superconducting phase appears in the range in
which the superconducting state for BPBO is
observed.

Figs. 5aand5b show plots ofZ,,-; andx =1 versus
(ny. Additionally, Fig. 5bincludes an insert, in which
the dependence of the chemical potential on the
average number of electrons at the node is plgthex
way, how the potential was calculated, is precisely
described in Appendix A).

It can be noticed that the wave function
renormalization factor, the energy shift functiomda
the chemical potential reach their maximum valwes f
the half-filled electronic band. It needs to be
underlined that the presented courses ofthe Xm=1
andu functions do not differ from the courses of those
functions for the case @ = 0[9].

C. Temperature dependence of the order parameter

The dependence of the order paramefeion the
temperature, for the case when the influence of the
pseudogap on the superconducting state is relgtivel
small G= 10*%, (n)= 1) and for the opposite case
(G= 5x10%, (n)= 0.175), is described in this
subchapter.

Figs. 6aand 6b show the order parameter as a
function of the Matsubara frequency for selected
values of temperature in the two cases. It is worth
pointing out that for the small pseudogap the aalti
temperature is equal tgk. = 117.09x10%, whereas
for the large pseudogap® = 1053.36x 1.

Within the framework of the Eliashberg formalism
the strict form of the4(T) function is determined by
the following equation:

A(T) =Re[A(w=A(T),T)] (24)
where the symbol RA[«)] denotes the real part of
the order parameter function on the real axis. The
function A(«) is determined from the analytical
development of the functiod, [25] and can be
described by the following formula:

r-1
Pa1 * Ppo@+ ...+ Pp W
Opg + Qpo@+ ...+ Qg @+

where p, and @, are numerical coefficients; is
equal to 200.

AN w) = (25)

Chem. Met. Alloyd (2011)
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Fig. 4 Dependence of the functigi.-; on the
average number of electrons at the ngtdédor
selected values of th@ parameter; KT = 10

was assumed.
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Fig. 5 (A), (B) Dependence of the functions
Zn=1 and Yn=1 on the average number of

electrons at the node. The insert in (B) shows

the chemical potential as a function{of; G =
103 and kT = 10°% were assumed.

The open form of the4(T) function near the
critical temperature is shown ifigs. 7aand 7b. The
dependence of the order parameter presented ia thes

figures can be described by the simple formula:

AT) = A() 1—[

a
1- - 1?[
T.-T

where, for both cases,gk = 10°%; for Fig. 7a
A(T,) = 143x10°% anda = 1.0746; forFig. 7k A(Ty) =

756x10°% anda = 1.0193.

(26)
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Fig. 6 Dependence of the functiad, on the
Matsubara frequency for selected values of
temperature; (AG = 10% and (n) = 1 were
assumed, (B)G = 5x10°% and (n) = 0.175
were assumed.

IV. Summary

A model that describes the properties of a
superconducting phase in the presence of a psepdoga
has been proposed and carefully analyzed in the
present paper. It is assumed that the superconducti
state is induced by electron-phonon interactiort, bu
the pseudogap is related to the presence of local
charge density waves in the system.

As a result of the analysis, Eliashberg equations
including the pseudogap have been derived and then
solved numerically.

The most relevant result obtained here is directly
connected with the determined phase diagram (see
Fig. 4). It has been shown that the obtained diagram
qualitatively reproduces the form of the phase idiag
for the superconducting phase in Bafi,O;. It has
to be pointed out that in the future, the analyzexdiel
should enable a quantitative description of the
superconducting state in BPBO. In order to achieve
this, the exact form of the Eliashberg function for
BPBO should be determined and the maximum width
of the pseudogapz) should be defined on the basis of
the experimental results. A qualitative analysighi$
type can be performed with the possibilities of erd

computer equipment and has been successfully
conducted for such compounds as Al, Pb or
MgB, [26].

A more precise description of the obtained results
is presented below. First of all, the pseudogaypy ver
strongly reduces the order parameter of the
superconducting phas&, TheA parameter decreases
with increasing width and depth of the pseudogap,
which is directly connected to the lowering of the
number of available electronic states near the Ferm
surface. It is worth mentioning that near an
appropriately largeG value, the superconducting
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Fig. 7 The order parameter as a function of the
temperature nedf.; (A) G = 10% and(ny = 1
were assumed, (B} = 5x10% and(n) = 0.175
were assumed.

phase begins to vanish from the side of the higheg
of the (n) parameter. The dependence of the order
parameter on the temperature near the critical

temperature, in the case of a small and a large
pseudogap, was also analyzed in the present plper.
was shown that with increasing size of the pseudoga
the analytical form of theA(T) function changes;
a= 1.0746 for a small pseudogap amet 1.0193 for

a large one.

Based on the presented results it has been proven
that the pseudogap does not have any effect on the
values of the remaining solutions of the Eliashberg
equations e.g. the wave function renormalization
factor and energy shift function.

Appendix A

The chemical potential of the electron gas was
calculated with the assumption that the electron
effective mass is equal to the bare electron mass
(Zn = 1), the many body effects do not renormalize the
value of the chemical potential(= 0) and the
system is in the normal stat$.{= 0). The equation
that describes the chemical potential can be brough
into an algebraic form, which facilitates the nuicalr
analysis significantly. Details of the proceduree ar
given below:

L2 G2(n® } & -1
ny=1-— 1- =1-H(n),G, Al
" ﬁzkzmz‘;{ A T PR P A
The H{n) ,G, w) function is defined by the expression:
H(NY,G, y) = ,0(0){|1 + G(n)zTanl{’gG;n)}lz —Gz<n>3|3} (A2)
where
v g, _2,| N5
|1EJ' TanhP¥¥ "H) e = 2 (A3)
w 2 A COS{B(\NW)}
2
YR _ 1 [em]?-w-p)?
o e o 2"{[G<n>]2—(vvw)2 .
- 1 B(e-H)
|3_.[_W (5-,u)2—[G<n>]2Tanh ) de -
=__2 {arcTamEW_”]Tanl{’B(W_'u)}—arCTanPEW-W]TanI{’B(W-F’U)}—Sisi}
LG(n) G(n) 2 G(n) 2

The symbol Sisi denotes a finite integral that doeshave a primitive function; the formula thafides the Sisi

integral and its value is given below:

2X
BG(n)

BW-w)
Sisi= j

B+ arcTanP|i
T2

56

2X

} SecH (x)dx = E:orcTaanﬁG

} SecH (x)dx =0 (A6)

()
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The limits of the integral in Eq. A6 were shiftaml#o
because of the values of the considered physical
quantities and the form of the integrated function.

[12] C. Chaillout, A. Santoro, J.P. Remeika, A.S.
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