Electronic transport properties of $R_xY_{1-x}Ni_5Ge_3$ (R = Ce, Yb) with R elements in Kondo state

Galyna KOTERLYN¹*, Bogdan MOROKHIVSKII², Mykhaylo KOTERLYN^{2,3}, Roman GLADYSHEVSKII⁴

Received November 23, 2009; accepted December 23, 2009; available on-line April 27, 2010

The results of an investigation of electrical resistivity ρ and thermoelectric power S are presented for the solid solutions $Ce_xY_{1-x}Ni_5Ge_3$ ($x \le 0.5$) and $Yb_xY_{1-x}Ni_5Ge_3$ (x = 0, 0.5) in the temperature range 4-400 K. The overall shape of the $\rho(T)$ and S(T) dependences observed for the Ce- and Yb-containing alloys is typical for paramagnetic intermetallics exhibiting a combined effect of Kondo and crystal field (CF) interactions with a low single-ion Kondo temperature T_K , which is generally much lower than the overall CF splitting. The single-ion Kondo interaction does not vary when the Y sublattice is diluted with Ce ($T_K \sim 60$ -80 K). For the Yb-containing alloy, the dependences typical for a Kondo-impurity ground state with $T_K < 5$ K were observed.

Rare earth compounds / Electronic transport / Kondo effects / Crystal fields

1. Introduction

Ternary rare earth metal-nickel-germanium systems have attracted considerable interest in recent years because of their peculiar crystal structures and greatly varying physical properties [1-3]. Systematic studies of isothermal sections of the phase diagrams of R-Ni-Ge systems show the formation of RNi₅Ge₃ intermetallic compounds with YNi₅Si₃-type structure (space group *Pnma*) [4,5]. The peculiarity of this structure type is the formation of one-dimensional -Rchains along [010]. The short Y-Y distances in the chain, equal to ~3.9 Å, in the YNi₅Ge₃ compound indicates the existence of Y-Y bonds, while the distance between the chains is above 5.6 Å. Thus, the RNi₅Ge₃ compounds constitute a perspective object for the investigation of real low-dimensional Kondosystems based on the valence unstable elements Ce or Yb.

According to literature data [5,6], no Cecontaining compound with YNi₅Si₃-type structure is formed in the ternary Ce-Ni-Ge system. In the case of Yb-Ni-Ge a compound with YNi₅Si₃-type structure exists, but the magnetic susceptibility, specific heat, and electrical resistivity do not indicate any Kondo-

effect, and the YbNi $_5$ Ge $_3$ compound is antiferromagnetic at T < 2.7 K [7]. The formation of Kondo state Ce- and Yb-ions in the YNi $_5$ Ge $_3$ -type crystal matrix may be possible as the result of atomic substitutions in the R-sublattice.

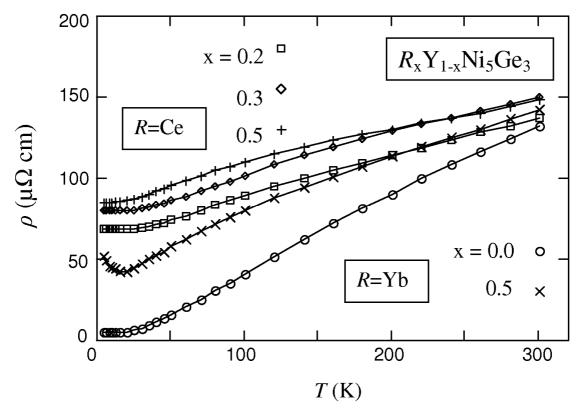
In this paper we present data from a study of electrical resistivity, ρ , and thermoelectric power, S, in the temperature range 4-400 K for the solid solutions $R_x Y_{1-x} Ni_5 Ge_3$ (R = Ce, Yb) with the R elements in Kondo state.

2. Experimental details

Polycrystalline samples were prepared by arc-melting the elemental components of the ideal composition under argon atmosphere. The purity of the starting materials was 99.9% for Y, Ce, and Yb, 99.99% for Ni, and 99.999% for Ge. Weight losses after melting were generally less than 0.5 mass%. The arc-melted buttons were homogenized by annealing in evacuated quartz tubes under vacuum at 1070 K for 800 h. The purity of the obtained samples was checked at room temperature by powder X-ray diffraction using a DRON-2.0 diffractometer with Fe $K\alpha$ -radiation.

¹ Western Scientific Center of the National Academy of Sciences and Ministry of Education and Science of Ukraine, Matejka St. 4, 79000 Lviv, Ukraine

² Faculty of Electronics, Ivan Franko National University of Lviv, Dragomanova St. 50, 79005 Lviv, Ukraine


³ Department of Physics, Kazimierz Wielki University, Weyssenhoffa Sq. 11, 85-072 Bydgoszcz, Poland

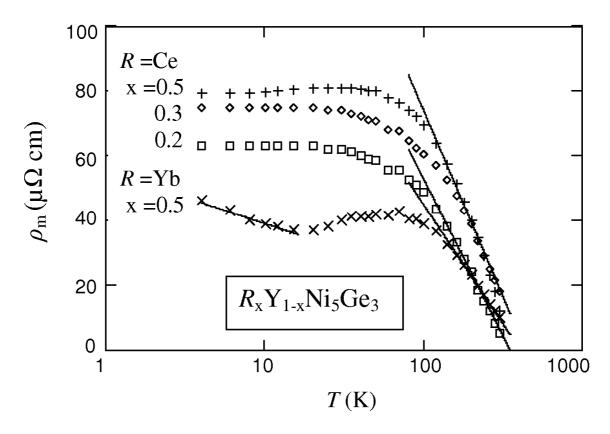
⁴ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

^{*} Corresponding author. E-mail: koterlyn@mail.lviv.ua

Table 1 Lattice parameters (a, b, c) and unit-cell volumes (V) for $R_x Y_{1-x} Ni_5 Ge_3$ $(R = Ce, Yb)$ solid solutions
(YNi ₅ Si ₃ -type structure, space group <i>Pnma</i>).

Compound	a, Å	b, Å	c, Å	<i>V</i> , Å ³
YbNi ₅ Ge ₃	18.982(8)	3.830(1)	6.779(4)	492.8
$Yb_{0.5}Y_{0.5}Ni_5Ge_3$	19.05(1)	3.849(2)	6.787(3)	496.9
YNi_5Ge_3	19.108(7)	3.864(4)	6.773(4)	500.1
$Ce_{0.1}Y_{0.9}Ni_5Ge_3$	19.11(1)	3.878(3)	6.787(4)	502.8
$Ce_{0.2}Y_{0.8}Ni_5Ge_3$	19.124(9)	3.887(2)	6.795(3)	505.0
$Ce_{0.3}Y_{0.7}Ni_5Ge_3$	19.151(8)	3.893(2)	6.790(2)	506.2
$Ce_{0.5}Y_{0.5}Ni_5Ge_3$	19.18(1)	3.901(3)	6.791(3)	507.9

Fig. 1 Electrical resistivity of $R_x Y_{1-x} Ni_5 Ge_3$ (R = Ce, Yb) as a function of temperature.


The lattice parameters determined for the $R_x Y_{1-x} Ni_5 Ge_3$ (R = Ce, Yb) solid solutions are listed in Table 1.

The electrical resistivity was obtained by the standard four-probe dc technique. The thermoelectric power was measured by a differential method with a temperature gradient of 2-4 K using pure copper as reference material.

3. Results and discussion

The temperature dependence of the resistivity, $\rho(T)$, of $R_x Y_{1-x} Ni_5 Ge_3$ (R = Ce, Yb) is displayed in Fig. 1. The curves resemble those of the electrical resistivity of intermetallic compounds exhibiting spin fluctuations due to Kondo interactions [8]. The $\rho(T)$ plot for

YNi₅Ge₃ adequately corresponds to the ordinary Bloch-Grüneisen relation. The value of the Debye temperature, Θ_D , derived for YNi₅Ge₃ by a leastsquares fitting procedure, is ~250 K. Data on YNi₅Ge₃ were recorded in order to estimate the phonon contribution to the resistivity of the Ce(Yb)-containing samples. The temperature dependence of the magnetic contribution to the total resistivity, $\rho_{\rm m}$, which can be estimated using the equation $\rho_m = \rho(R_x Y_{1-x} Ni_5 Ge_3)$ – $\rho(YNi_5Ge_3)$, is shown in a semilogarithmic representation in Fig. 2. The overall shape of the $\rho_{\rm m}(T)$ plots for the Ce(Yb)-containing samples appears to be typical for Kondo-impurity and crystal field (CF) interactions [9,10]. The regions of $-\ln(T)$ dependence were analyzed in terms of the theory developed by Cornut and Cogblin [9]. According to them, the combined influence of Kondo-impurity and CF

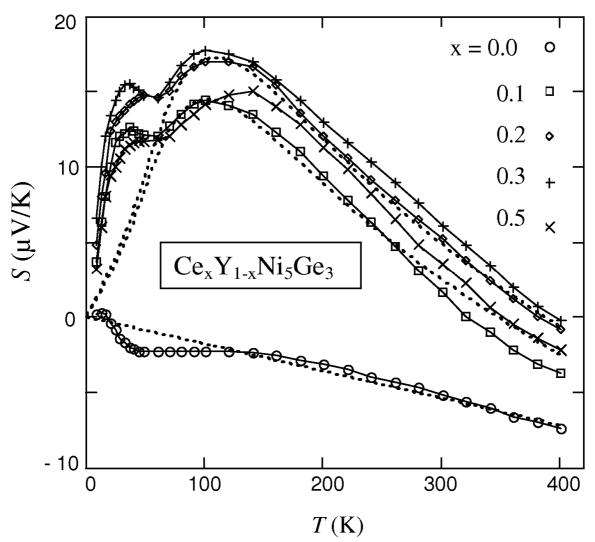


Fig. 2 Temperature dependence of the magnetic contribution to the total electrical resistivity of $R_x Y_{1-x} Ni_5 Ge_3$ (R = Ce, Yb) in a semilogarithmic scale.

interactions on the electrical properties of Ce(Yb)-containing intermetallic compounds results in a magnetic contribution to the total electrical resistivity, which can be expressed as:

$$\rho_m(T) = A + BN(E_F)J^3 \frac{\alpha_i^2 - 1}{2j + 1} \ln T , \qquad (1)$$

where J is the s-f exchange integral, α_i stands for the effective degeneracy of the crystal field 4f level, j is the total angular momentum of the Ce³⁺ (Yb³⁺) ions, $N(E_{\rm F})$ is the electronic density of states at the Fermi energy, and A and B are constants defined in [9]. From Eq. (1) it can be seen that the ratio of the logarithmic slopes of the high- and low-temperature resistivities is determined exclusively by the α_i parameters. In the case of Ce³⁺ ions experiencing an orthorhombic crystal-field potential, the six-fold degenerated ground multiplet ${}^{2}F_{5/2}$ is split into three doublets. Therefore, for well separated crystal-field levels one can expect two regions of $-\ln(T)$ dependence of the resistivity. However, only one region of $-\ln(T)$ dependence is observed in Fig. 2. Such a behavior of $\rho_m(T)$ is characteristic of Kondo systems with $T_{\rm K} \sim \Delta_1$, where Δ_1 is the energy of the first excited CF doublet. The insignificant variation of the slope of the linear segment of $\rho_{\rm m}(T)$ for different amounts of atomic substitution $Y \rightarrow Ce$ shows the relative stability of the Kondo interaction energy $(JN(E_F) \sim \text{const})$ with respect to variations of the Ce concentration. As it can be seen from Fig. 2, $\rho_{\rm m}(T)$ reveals saturation at low temperature ($\rho_{\rm m}$ ~ const for T < 60-80 K). According to the theoretical description of the transport properties of Kondo systems [9,10], this indicates a nonmagnetic ground state of Kondo-impurity type with $T_{\rm K} \approx 60\text{-}80$ K for the $\text{Ce}_{\rm x} \text{Y}_{1\text{-}{\rm x}} \text{Ni}_5 \text{Ge}_3$ alloys. In the case of the Yb_{0.5}Y_{0.5}Ni₅Ge₃ compound there are two regions of logarithmic dependence of the resistivity. According to the theory [9], the change in the slope of the linear segments is associated with a change in the population of the sublevels formed by partial removal of the degeneracy in the ground state of the Yb³⁺ ion (ground multiplet ${}^{2}F_{7/2}$) under the influence of the crystal field when T increases. Considering the limits $T \ll \Delta$ and $T \gg \Delta$ (where Δ is the total crystal field splitting), the ratio of the slope of the linear segment at low temperature to that of the linear segment at high temperature is given by $v = (\alpha_l^2 - 1)/(\alpha_h^2 - 1)$, where α_l and α_h denote the effective degeneracies of the crystalfield levels at low and high temperature, respectively. In a crystal field with orthorhombic symmetry, the 4f level of the Yb³⁺ ion splits into four sublevels with degenerancy $\alpha = 2$. On examining all the possible transitions in such a crystal field, we obtained the following values for v: 0.20 ($\alpha_l = 2$, $\alpha_h = 4$), 0.09 $(\alpha_{l} = 2, \alpha_{h} = 6), 0.05 (\alpha_{l} = 2, \alpha_{h} = 8), 0.43 (\alpha_{l} = 4,$ $\alpha_h = 6$), 0.24 ($\alpha_l = 4$, $\alpha_h = 8$), and 0.56 ($\alpha_l = 6$, $\alpha_h = 8$).

Fig. 3 Thermoelectric power of $Ce_xY_{1-x}Ni_5Ge_3$ as a function of temperature. The dotted lines show fittings according to Eq. (4).

The experimental value v=0.21 corresponds to a scheme where the 4f level splits in the doublet ground and the first excited states ($\alpha_{\rm l}=2,~\alpha_{\rm h}=4$). Thus, we may assume that the two linear segments are related to Kondo scattering of charge carriers, predominantly in the doublet at temperatures $T<60~{\rm K}$ and in the fourfold degenerate 4f level for $T>80~{\rm K}$. The existence of CF effects in the Kondo scattering mechanism with a doublet ground state of the 4f level was confirmed by measurements of magnetic and specific heat properties for YbNi₅Ge₃ [7]. The absence of saturation of $\rho_{\rm m}(T)$ at low temperature indicates small values of the Kondo temperature for the ground state doublet, $T_{\rm K}<5~{\rm K}$.

Figs. 3 and 4 show the thermoelectric power, S, of samples $R_x Y_{1-x} Ni_5 Ge_3$ (R = Ce, Yb) as a function of temperature. For YNi₅Ge₃ S(T) shows a behavior typical for nonmagnetic intermetallic compounds. It can be assumed that the thermoelectric power of YNi₅Ge₃ is qualitatively described in phonon and diffusion terms. At low temperature the phonon-drag

contribution is proportional to T^3 and changes at higher temperatures to 1/T, hence giving rise to the formation in S(T) of an extremum at $\sim 0.2\Theta_{\rm D}$, where $\Theta_{\rm D}$ is the Debye temperature [11]. For YNi₅Ge₃ $\Theta_{\rm D}$ estimated from resistivity measurements is 250 K, which is consistent with the minimum observed in S(T) near 50 K. The phonon drag peak of about $-2 \, \mu V/K$ near 50 K is superposed upon the diffusion term having a slope of about $-1.8 \times 10^{-2} \, \mu V/K^2$ (Fig. 3, dotted straight line).

The S(T) plots for $Ce_xY_{1-x}Ni_5Ge_3$ have two broad peaks near $T_{Smax1} = 30\text{-}40 \text{ K}$ and $T_{Smax2} = 100\text{-}140 \text{ K}$ and stay positive up to 300 K. The temperature position of the peak S_{max1} is not sensitive to the Ce content, but the position of the peak S_{max2} moves to higher temperatures with increasing Ce concentration. In the case of $Yb_{0.5}Y_{0.5}Ni_5Ge_3$, S(T) takes negative values in the range of measurements with a minimum at $T_{Smin} = 56 \text{ K}$. Such a behavior at temperatures $T > T_K$ can be qualitatively described in the framework of models [12-14] that take into account a Kondo

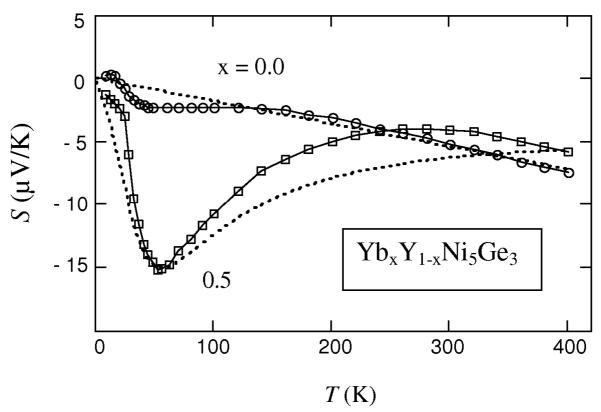


Fig. 4 Thermoelectric power of $Yb_xY_{1-x}Ni_5Ge_3$ as a function of temperature. The dotted lines show fittings according to Eq. (4).

effect in the presence of a CF effect. In [12,13] it was shown that characteristic maxima or minima on S(T) for Ce- or Yb-containing intermetallic systems strongly depend on the CF splitting. This anomaly appears at around $T_{\rm Smax,min} \sim \Delta/3$ (where Δ is the effective overall CF splitting). Taking into consideration that the CF factor is essential to describe the behavior of S(T), one can approximately estimate the thermoelectric power for a two-level CF scheme splitting [14]. The absence of data on a number of microscopic parameters defining the interaction in these systems motivates the use of a simplified equation for the magnetic contribution to the overall thermoelectric power:

$$S_f = \frac{k_B}{|e|} \rho_0 \frac{S_\Delta}{R_\Delta} G_1(\Delta, 0) \sim G_1(\Delta, 0), \tag{2}$$

where $\rho_0 S_{\Delta}/R_{\Delta}$ is a dimensionless quantity, which is described in [14], $k_{\rm B}/e \approx 86 \,\mu{\rm V/K}$. The function $G_1(\Delta,0)$ can be expressed in the form:

$$G_1(\Delta,0) = \frac{\Delta}{T} \left[1 + \frac{\Delta}{2\pi T} \operatorname{Im} \psi' \left(i \frac{\Delta}{2\pi T} \right) \right] \equiv \Phi_4 \left(\frac{\Delta}{2\pi T} \right), (3)$$

$$\Phi_4(x) = \pi \int_0^\infty \frac{\sin(xt)}{2\sinh^2(t/2)} \left[\frac{t}{2} \coth\left(\frac{t}{2}\right) - 1 \right] dt ,$$

where ψ' is the derivative of the psi-(digamma-) function. The temperature dependence of the thermoelectric power for the $R_x Y_{1-x} Ni_5 Ge_3$ samples may be described by the expression:

$$S(T) = C_1 T + C_2 G_1(\Delta, 0),$$
 (4)

where C_1 and C_2 are temperature-independent parameters that determine the strength of the contributions arising from the nonmagnetic Mott-type and magnetic scattering processes, respectively. Simulations of S(T) (dotted lines) for Ce- and Ybcontaining alloys are shown in Figs. 3 and 4. These curves were computed on the basis of Eq. (4) by fitting the calculated parameters $S_{max2}(S_{min})$ and $T_{\rm Smax2}(T_{\rm Smin})$ to experimental ones. The best agreement between calculation and experiment at temperatures $T > T_{\rm K}$ was obtained for $C_1 = -2.7 \times 10^{-2}$, -2.8×10^{-2} , and $-5.4 \times 10^{-3} \text{ } \mu\text{V/K}^2$, $C_2 = 18.8$, 22.0, and -16.3 $\mu\text{V/K}$, $\Delta = 370$, 390, and 180 K for $Ce_{0.1}Y_{0.9}Ni_5Ge_3$, $Ce_{0.2}Y_{0.8}Ni_5Ge_3$, and $Yb_{0.5}Y_{0.5}Ni_5Ge_3$, respectively. Analogous calculations for the remaining $Ce_x Y_{1-x} Ni_5 Ge_3$ alloys gave CF parameters of $\Delta = 420$ and 450 K for the concentrations x = 0.3 and 0.5, respectively. The calculated S(T) dependences are in better agreement with the experiment for the Cecontaining than for the Yb-containing alloys. This may be an indication of the somewhat limited application of the doublet-quartet CF splitting scheme to the 4f level of the Yb³⁺ ion. The observed values of for the Ce-containing alloys correspond qualitatively to the change of the lattice parameters and unit-cell volumes, which suggest an increase of the chemical pressure for the atomic substitution $Ce \rightarrow Y$.

According to the model proposed in [12,13], Eq. (4) describes the main high-temperature features of Ce and Yb intermetallics. In the low temperature region $T \ll \Delta$ the principal contribution to the overall thermoelectric power of the alloys is the Kondo-type interaction of the conduction electrons with the localized magnetic moments of the ground state doublets, which are well described by the singleimpurity Anderson model [14,15]. Depending on the values of a number of parameters the thermoelectric power can show a minimum or a maximum at the temperature $T \sim T_K/2$. In the case of the $Ce_x Y_{1-x} Ni_5 Ge_3$ alloys maxima were observed at T = 30-40 K, which suggests characteristic temperatures $T_{\rm K}$ of ~60-80 K. In the case of the Yb_{0.5}Y_{0.5}Ni₅Ge₃ alloy a similar estimation of $T_{\rm K}$ is questionable, since positive contribution to the thermoelectric power at T = 20 Kneeds additional studies.

Conclusions

Bases on the transport properties of $R_{\rm x} Y_{1\text{-x}} N i_5 Ge_3$ alloys studied here one can conclude that Ce- and Ybions in the YNi₅Ge₃ crystal matrix reach the state of Kondo-impurity with $T_{\rm K}$ substantially smaller than the overall CF splitting of the 4f level. The detection of low-dimensional Kondo-lattice effects requires additional studies of the transport properties at lower temperatures and larger concentrations of Ce- and Ybions.

References

- [1] B. Chevalier, *J. Magn. Magn. Mater.* 196-197 (1999) 880.
- [2] A.P. Pikul, D. Kaczorowski, P. Rogl, Yu. Grin, *Phys. Status Solidi B* 263 (2003) 364.
- [3] M. Ohashi, G. Oomi, K. Ishida, I. Satoh, T. Komatsubara, T. Kawae, K. Takeda, J. Alloys Compd. 408-412 (2006) 84.
- [4] J.T. Zhao, B. Chabot, E. Parthé, *Acta Crystallogr. C* 43 (1987) 1458.
- [5] P.S. Salamakha, O.L. Sologub, O.I. Bodak, In: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 27, Elsevier, Amsterdam, 1999, p. 338.
- [6] P. Salamakha, M. Konyk, O. Sologub, O. Bodak, J. Alloys Compd. 236 (1996) 206.
- [7] H.S. Jeevan, Z. Hossain, C. Geibel, *Physica B* 359-361 (2005) 235.
- [8] N.B. Brandt, V.V. Moshchalkov, Adv. Phys. 33 (1984) 373.
- [9] B. Cornut, B. Coqblin, *Phys. Rev. B* 5 (1972) 4541.
- [10] N.E. Bickers, D.L. Cox, J.W. Wilkins, *Phys. Rev. B* 36 (1987) 2036.
- [11] F. Blatt, P. Schroeder, C. Foiles, D. Greig, Thermoelectric Power of Metals, Plenum, New York, 1976.
- [12] I. Peschel, P. Fulde, Z. Phys. 238 (1970) 99.
- [13] A.K. Bhattacharjee, B. Coqblin, *Phys. Rev. B* 13 (1976) 3441.
- [14] T.A. Costi, A. Newson, V. Zlatic, J. Phys.: Condens. Matter 6 (1994) 2519-2558.
- [15] V. Zlatic, B. Horvatic, I. Milat, B. Coqblin, G. Czycholl, C. Grenzebach, *Phys. Rev. B* 68 (2003) 104432.