Crystal structure of the Tl₄PbSe₃ ternary compound

T.O. MALAKHOVSKA¹, M.Yu. SABOV¹, E.Yu. PERESH¹, V. PAVLYUK^{2,3}*, B. MARCINIAK³

Received December 3, 2008; accepted June 14, 2009; available on-line November 16, 2009

 Tl_4PbSe_3 was prepared by reaction of the elemental components in quartz ampoules at 850 K. Its crystal structure was solved and refined from X-ray single crystal data. Tl_4PbSe_3 is isotypic with Tl_4SnS_3 and crystallizes in the centrosymmetric space group P4/ncc (a = 8.5346(2) Å, c = 12.6871(7) Å), as a distorted derivative of the In_5Bi_3 type of structure.

Intermetallics / Crystal structure / X-ray diffraction

1. Introduction

In the systems Tl_2Y-XY (X = Sn, Pb; Y = S, Se, Te) Tl₄XY₃ ternaries were obtained [1-10] except for the pseudobinary system Tl₂Se-PbSe. The observed Tl₄XY₃ compounds crystallize in isotypic tetragonal crystal structures, however, the crystal structures of Tl₄PbS₃ and Tl₄PbSe₃ were not established. The ternary selenides and tellurides form from the tetragonal (space group I4/mcm) binary compounds Tl₅Se₃ and Tl₅Te₃. Both binary compounds are known with the Cr₅B₃ type structure. Nordell and Miller [10] propose the valence state Tl^{1+} for the 16*l* atoms and Tl^{2+} for the 4c site. This assignment is based on a comparison of bond distances, the coordination environments and Mulliken populations with other thallium compounds. The formula Tl₅Te₃ can thus be rewritten as $Tl_4^{1+}Tl^{2+}Te_3$. The thallium atoms on the 4c site can be fully replaced by other elements, resulting in a group of ternary compounds: Tl₄XY₃ (X = Sn, Pb; Y = S, Se, Te).

2. Experimental details

 Tl_4PbSe_3 was prepared from proper amounts of highpurity elemental solids (Tl-99.99 wt. %,Pb-99.998 wt. %, Se-99.9998 wt. %) by encapsulating them under vacuum in quartz ampoules. The samples were annealed at maximal synthesis temperature (850 K) for 24 hours and then at 573 K for one week. The obtained substance was investigated by difference thermal analysis (NTR-62) and X-ray powder diffraction (DRON-4, Cu Ka radiation). Only one endothermic effect was observed at 792 K. The enthalpy and entropy of melting are 64 kJ/mol and 81 J/mol K, respectively. X-ray data of powder showed that Tl₄PbSe₃ can be crystallized in a tetragonal lattice isotypic to Tl₄SnS₃(Se₃, Te₃), Tl₄PbTe₃. A Tl₄PbSe₃ single crystal was obtained by the Bridgman technique. A small irregularly shaped single crystal was selected from an alloy with nominal composition Tl₄PbSe₃. Single crystal data for Tl₄PbSe₃ were collected at room temperature on a four-circle diffractometer Xcalibur Oxford Diffraction with a CCD detector (graphite monochromatized Mo Kα radiation, ω scan mode). The crystal structure of Tl₄PbSe₃ was successfully solved by direct methods and refined using SHELX-97 package programs [11,12].

3. Results and discussion

The Tl_4PbSe_3 compound crystallizes in the tetragonal system (centrosymmetric space group P4/ncc, Z=4) and its structure, which is isotypic to that of Tl_4SnS_3 , is built-up from sheets with strong Tl-Se interactions. The tin atom exhibits an undistorted octahedral surrounding. Table 1 contains the crystal data information, and details of the data collection and structure refinement. Atomic parameters and anisotropic displacement parameters are listed in

¹ Uzhgorod National University, Department of Inorganic Chemistry, Pidgirna St. 46, 88000 Uzhgorod, Ukraine

² Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryla i Mefodia St. 6, 79005 Lviv, Ukraine

³ Częstochowa Jan Długosz University, Institute of Chemistry and Environmental Protection, Al. Armii Krajowej 13/15, 42200 Częstochowa, Poland

^{*} Corresponding author. E-mail: pavlyuk@franko.lviv.ua

Table 1 Crystallographic data for the Tl₄PbSe₃ single crystal and experimental details of the structure determination.

Empirical formula	Tl_4PbSe_3
Structure type	Tl_4SnS_3
Formula weight (g/mol)	1682.07
Space group	P4/ncc (130)
Pearson symbol	tP32
Crystal dimensions (mm ³)	0.14×0.13×0.04
Unit cell dimensions:	
a (Å)	8.5346(2)
c (Å)	12.6871(7)
$V(\mathring{\mathrm{A}}^3)$	924.12(6)
Z	4
Calculated density (D _{calc} , g/cm ³)	9.067
Absorption coefficient (µ, mm ⁻¹)	99.394
Scan mode	ω
Theta range for data collection (deg.)	$3.21 \div 26.36$
F(000)	2032
Range in h k l	$-10 \le h \le 9, -10 \le k \le 9, -15 \le l \le 8$
Total no. reflections	5004
Independent reflections	478 (<i>R</i> _{int} =0.0802)
Reflections with $I > 2\sigma(I)$	$376 (R_{\text{sigma}} = 0.0308)$
Weighting scheme	$1/[\sigma(F_0)^2 + (0.0291 \times P)^2 + 15.8895 \times P]$
Data/parameters	478/22
Goodness-of-fit on F^2	1.280
Final <i>R</i> indices $[I > 2\sigma(I)]$	R_1 =0.0287, w R_2 =0.0624
R indices [all data]	R_1 =0.0496, w R_2 =0.0818
Extinction coefficient	0.0270(19)
Largest diff. peak and hole (e/Å ³)	1.751 and -2.188

Table 2 Atomic coordinates and displacement parameters for the Tl₄PbSe₃ single crystal.

Atom	Ox.	Wyckoff	S.	O.F.	x/c	a	y/b		z/c	$U_{eq}(\mathring{\mathrm{A}}^2)$
Tl1	+1	16 <i>g</i>	1.00		0.1263	9(9)	0.57852(9)	0.09574(5)	0.0368(3)
Pb2	+2	4c	1.00		1/4		1/4		0.28456(11)	0.0320(4)
Se3	-2	4c	1.00		1/4		1/4		0.0223(3)	0.0334(8)
Se4	-2	8 <i>f</i>	1.00		0.4149	(2)	0.5851(2)	1/4	0.356(6)
Atom	U_{II}	U_{22}		U	33		U_{12}		U_{13}	U_{23}
Tl1	0.0383(5)	0.0396(5	5)	0.0326	(5)	-0.00	145(3)	0.0	015(3)	0.0070(3)
Pb2	0.0318(5)	0.0318(5	5)	0.0323	(7)	0		0		0
Se3	0.0318(11)	0.0318(1	1)	0.0366	(19)	0		0		0
Se4	0.0377(9)	0.0377(9))	0.0313	(13)	0.01	15(12)	-0.	0075(8)	-0.0075(8)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. The anisotropic displacement factor exponent takes the form $-2\pi^2[h^2a^{*2}U_{II} + ... + 2klb^*c^*U_{23}]$.

Table 2. A projection of the structure of Tl_4PbSe_3 is shown in Fig. 1 together with the packing of $[PbSe_6]$ octahedra. The Tl_4PbSe_3 compound may be described as a distorted derivative of the In_5Bi_3 type of structure, which itself should be considered as a subfamily of the Cr_5B_3 type of structure.

The interatomic distances (Table 3) do not show considerable deviation from the sums of radii of the components. The coordination polyhedron of the Tl atom is a non-coplanar triangle Se_3 . The coordination number of the Se atoms oscillates from 6 (octahedron Tl_4Sn_2) to 8 (distorted square anti-prism Tl_6Sn_2).

Table 3 Interatomic distances for Tl_4PbSe_3 (in Å).

T11	Se4	3.0064	Se3	Pb2	3.0162
	Se3	3.1372		T11	3.1372
	Se4	3.1459		T11	3.1372
	Se4	3.4923		T11	3.1372
	T11	3.5146		T11	3.1372
	T11	3.5230		Pb2	3.3273
	Tl1	3.5230			
	T11	3.6082			
Pb2	Se3	3.0162	Se4	T11	3.0064
	Se4	3.2175		T11	3.0064
	Se4	3.2175		T11	3.1459
	Se4	3.2175		T11	3.1459
	Se4	3.2175		Pb2	3.2175
	Se3	3.3273		Pb2	3.2175
				T11	3.4923
				T11	3.4923

Fig. 1 Projection of the structure of Tl₄PbSe₃ showing the packing of [PbSe₆] octahedra.

4. Conclusions

The new ternary compound of Tl₄PbSe₃ was prepared by solid-state reaction from the elements at 850 K in an evacuated silica tube.

The enthalpy and entropy of melting are 64 kJ/mol and 81 J/mol K, respectively

Tl₄PbSe₃was found to crystallize in the Tl₄SnS₃ structure type, space group *P*4/*ncc*.

References

- [1] A.A. Gotuk, M.B. Babanly, A.A. Kuliev, *Izv. Akad. Nauk, Neorg. Mater.* 15 (1979) 530-531.
- [2] A.A. Gotuk, M.B. Babanly, A.A. Kuliev, *Izv. Akad. Nauk, Neorg. Mater.* 15 (1979) 1356-1361
- [3] A.A. Gotuk, M.B. Babanly, A.A. Kuliev, *Izv. Akad. Nauk, Neorg. Mater.* 14 (1978) 587-589.
- [4] L.G. Berg, Z.M. Latypov, R.M. Chechetkin, *Dokl. Akad. Nauk USSR* 185 (1969) 335-337.
- [5] S. del Bucchia, J.C. Jumas, E. Philippot, M. Maurin, Rev. Chim. Miner. 18 (1981) 224-234.
- [6] S. Bradtmöller, R.K. Kremer, P. Böttcher, Z. *Anorg. Allg. Chem.* 620 (1994) 1073-1080.
- [7] S. Bradtmöller, P. Böttcher, Z. Anorg. Allg. Chem. 619 (1993) 1155-1160.
- [8] I. Schewe, P. Böttcher, H.G. von Schnering, Z. *Kristallogr.* 188 (1989) 287-298.
- [9] Z.M. Latypov, N.R. Faizullina, R.N. Sagitov, V.P. Savel'ev, *Izv. Akad. Nauk, Neorg. Mater.* 24 (1988) 1920-1921.
- [10] K.J. Nordell, G.J. Miller, *J. Alloys Compd.* 241 (1996) 51-62.
- [11] G.M. Sheldrick, *SHELXS*, *Program for the Solution of Crystal Structures*, University of Göttingen, Germany, 1997.
- [12] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.