Crystal structure and electrochemical hydrogenation of HfRe_{2-r}Al_r phases

Liana ZINKO¹*

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

* Corresponding author. Tel.: +380-32-2394506; e-mail: lianazinko@gmail.com

Received November 10, 2021; accepted December 29, 2021; available on-line April 1, 2022 https://doi.org/10.30970/cma14.0428

Crystal structures of the phases HfRe_{0.88(1)}Al_{1.12(1)} and HfRe_{0.26(1)}Al_{1.74(1)} (from the solid solutions based on HfRe₂ and HfAl₂) were determined from X-ray powder diffraction: structure type MgZn₂, Pearson symbol *hP12*, space group $P6_3/mmc$, a = 5.2443(2), c = 8.5281(4) Å and a = 5.2545(3), c = 8.5660(4) Å, respectively. The ability to electrochemical hydrogenation of samples from the regions of existence of $HfRe_{2,r}Al_{r}$ solid solutions was established. It was determined that the largest discharge capacity (68 mA·h/g) is observed in the prototype battery with an electrode based on the Hf₃₀Re₁₅Al₅₅ alloy.

Hafnium / Rhenium / Aluminum / X-ray powder diffraction / Solid solution / Crystal structure / **Electrochemical hydrogenation**

Кристалічна структура та електрохімічне гідрування фаз HfRe_{2-r}Al_r

Ліана ЗІНЬКО¹*

¹ Кафедра неорганічної хімії, Львівський національний університет імені Івана Франка вул. Кирила і Мефодія, 6, UA-79005 Львів, Україна * Контактна особа. Тел.: +380-32-2394506; e-mail: lianazinko@gmail.com

На основі масивів рентгенівських порошкових дифракційних даних визначено параметри кристалічної структури фаз HfRe_{0.88(1)}Al_{1,12(1)} і HfRe_{0.26(1)}Al_{1,74(1)} (з областей твердих розчинів на основі HfRe₂ i HfAl₂): структурний тип MgZn₂, символ Пірсона hP12, просторова група $P6_3/mmc$, a = 5,2443(2), c = 8,5281(4) Å і a = 5,2545(3), c = 8,5660(4) Å, відповідно. Встановлено здатність до електрохімічного гідрування зразків з областей існування твердих розчинів HfRe2.xAlx. Визначено, що найбільша розрядна ємність (68 мА-год/г) спостерігається у прототипа акумулятора з електродом на основі сплаву Hf₃₀Re₁₅Al₅₅.

Гафній / Реній / Алюміній / Рентгенівський дифракційний метод порошку / Твердий розчин / Кристалічна структура / Електрохімічне гідрування

Вступ

Сполуки зі структурами фаз Лавеса – типи MgCu₂ (символ Пірсона cF24, просторова група Fd-3m), MgZn₂ (*hP*12, *P*6₃/*mmc*) та MgNi₂ (*hP*24, *P*6₃/*mmc*) – існують переважно у подвійних системах двох перехідних металів чи перехідного металу і р-елемента, а також у відповідних потрійних системах [1, 2]. У системах {Ti, Zr, Hf}-{Mn, Re}-АІ відомі такі фази Лавеса зі структурою типу MgZn₂: TiMn₂ (a = 4,8294, c = 7,9309 Å [3]), ZrMn₂ (a = 5.035, c = 8.276 Å [4]), HfMn₂ (a = 5.002, c = 1.002) c = 8,205 Å [5]), ZrRe₂ (a = 5,260, c = 8,621 Å [6]), HfRe2 (a = 5,239, c = 8,584 Å [7]), ZrAl₂ (a = 5,281, c = 8,742 Å [8]), HfAl₂ (a = 5,250, c = 8,684 Å [9]), TiMnAl (a = 4,978, c = 8,151 Å [10]), ZrMnAl (a = 5,250, c = 8,479 Å [10]), HfMnAl (a = 5,160, c = 8,422 Å [10]).

Мета цієї праці — визначення кристалічної структури і гідрогенсорбційних властивостей фаз $HfRe_{2-x}Al_x$ — твердих розчинів заміщення на основі $HfRe_2$ та $HfAl_2$.

Методика експерименту

Електродуговим сплавлянням шихти металів високої чистоти (Hf \geq 99,9 мас.%, Re \geq 99,9 мас.%, Al ≥ 99,999 мас.%) виготовляли зразки для дослідження. Порошковий реній пресували у таблетки безпосередньо перед сплавлянням. У випадку, коли втрати під час сплавляння не перевищували 1 мас.%, то вважали, що склад сплавів дорівнює складу шихти. Потім піддавали гомогенізаційному зразки відпалюванню у вакуумованих кварцових ампулах за температури 1000°С впродовж тижня з наступним загартовуванням у холодній воді. Зразки, як литі, так і відпалені, стійкі до дії атмосферного середовища впродовж тривалого часу.

Рентгенограми отримували з використанням порошкових дифрактометрів ДРОН–2.0М (Fe $K\alpha$ проміння) і STOE Stadi Р (Cu $K\alpha_1$ проміння). Мікроструктури поверхонь сплавів досліджували на скануючому електронному мікроскопі Tescan Vega 3 LMU, оснащеному детектором Oxford Instruments SDD X-Max^N20. Для фазового аналізу та визначення структури розрахунків використовували програми STOE WinXPOW [11] і FullProf Suite [12].

Дослідження ефективності електрохімічного гідрування зразків проводили в прототипах енергії Swagelok-cell. хімічних джерел Подрібнений сплав змішували з електролітом до однорідної маси та заповнювали простір анодної частини акумулятора. У катодній частині акумулятора розміщали змочену електролітом суміш нікель(ІІ) гідроксиду та графіту (90 та 10 мас.%, відповідно). Графіт додавали для покращення провідності. У зібраному вигляді електроди відокремлювали сепаратором, змоченим 6 М розчином КОН. Зразки тестували в гальваностатичному режимі впродовж 30 циклів заряду-розряду: заряд акумулятора проводили при 0,8 мА, а розряд - при 0,2 мА до повного насичення матеріалу анода гідрогеном. Для заряд-розрядних отримання кривих використовували аналогово-цифровий модуль з автоматичною реєстрацією сигналу. Кількість поглинутого гідрогену обчислювали за законом Фарадея.

Результати та обговорення

За 1000°С у системі Hf-Re-Al [13] простежується існування двох обмежених твердих розчинів заміщення $HfRe_{2-x}Al_x$ зі структурою типу $MgZn_2$. Їхня особливість полягає у тому, що бінарні сполуки HfRe₂ [7] і HfAl₂ [9] мають близькі значення параметрів елементарної комірки та координат атомів. Для підтвердження заміщення атомів Re атомами Al (і навпаки) виконано уточнення кристалічної структури фаз у зразку складу Hf₂₅Re₂₅Al₅₀. На дифрактограмі наявні відбиття обох фаз (рисунок 1). Підтвердженням існування двох близьких за складом і однакових за структурою фаз є результати локального рентгеноспектрального аналізу (рисунок 2).

Рисунок 1 Дифрактограма зразка складу $Hf_{25}Re_{25}Al_{50}$ (Си $K\alpha_1$ проміння). Вертикальні штрихи вказують положення піків для фаз: $HfRe_{0.88}Al_{1,12}$ (1), $HfRe_{0.26}Al_{1,74}$ (2) та Re_4Al_{11} (3).

Рисунок 2 Фотографія шліфа зразка складу $Hf_{25}Re_{25}Al_{50}$: світла фаза — $HfRe_{0,88}Al_{1,12}$, сіра фаза — $HfRe_{0,26}Al_{1,74}$, темні включення — Re_4Al_{11} .

Деталі експерименту і результати уточнення кристалічної структури фаз узагальнено в таблиці 1, у таблицях 2-3 наведено координати атомів у цих структурах. Параметри елементарної комірки фаз для складів HfRe_{0.88}Al_{1.12} і HfRe_{0.26}Al_{1.74} збільшуються пропорційно до збільшення вмісту алюмінію, відповідно до розмірів атомів $(r_{\rm Hf} = 1,56 \text{ Å}, r_{\rm Re} = 1,37 \text{ Å}, r_{\rm Al} = 1,43 \text{ Å} [14]).$

Кристалічна структура обох фаз належить до родини фаз Лавеса, а координаційне оточення атомів гафнію і статистичних сумішей Re/Al є характерним для структур такого типу (рисунок 3). Атоми Hf знаходяться в центрах 16-вершинників Франка-Каспера, тоді як атоми Re та Al центрують ікосаедри.

Фази Лавеса піддаються оборотному гідруванню/дегідруванню з незначною зміною параметрів елементарної комірки. З метою

дослідження впливу співвідношення вмісту ренію і алюмінію на гідрогенсорбційні властивості фаз твердих розчинів HfRe2-xAlx виготовлено і досліджено здатність до електрохімічного гідрування трьох зразків, $Hf_{32}Re_{53}Al_{15}$, Hf₃₀Re₁₅Al₅₅ і Hf₃₀Re₁₀Al₆₀. Дифрактограму зразка Hf₃₀Re₁₅Al₅₅ до і після гідрування зображено на рисунку 4.

Розподіл елементів на поверхні електродного матеріалу на основі зразка $Hf_{30}Re_{15}Al_{55}$ представлено на рисунку 5. Слід зазначити, що деякі ділянки протравлені розчином електроліту, і видно темні ділянки (більший вміст оксигену), що, можливо, зумовлене утворенням аморфного Al(OH)₃. За умов експерименту простежується збереження кристалічної структури твердих розчинів та часткова аморфізація матеріалу електродів (рисунок 6).

Таблиця 1 Деталі експерименту та кристалографічні характеристики фаз HfRe_{2-x}Al_x*.

Склад фази	$HfRe_{0,88(1)}Al_{1,12(1)}$	$HfRe_{0,26(1)}Al_{1,74(1)}$			
Вміст, мас.%	75,7	23,9			
Структурний тип	MgZn ₂ MgZn ₂				
Символ Пірсона	hP12 hP12				
Кількість формульних одиниць Z	4	4			
Просторова група	$P6_3/mmc$	P6 ₃ /mmc			
Дифрактометр	STOE Stadi P				
Проміння, довжина хвилі, Å	Cu <i>K</i> α ₁ , 1,54056				
Межі 2 $ heta$, °	6,00-104,865				
Крок 2 <i>θ</i> , °, час знімання, с	0,015, 300				
Параметри елементарної комірки, Å	a = 5,2443(2) $a = 5,2545(3)$				
	c = 8,5281(4)	c = 8,5660(4)			
Об'єм елементарної комірки V , Å ³	203,12(1)	204,82(2)			
Густина, г/см ³	12,19	8,898			
Параметри профілю U, V, W	0,091(3), 0,015(1), 0,007(1)				
Фактори розбіжності <i>R</i> _р , <i>R</i> _{wp}	0,0779, 0,103				
Фактор розбіжності R _в	0,0299 0,0494				
*BMICT data Re. Al., (CTDVKTVD2 THUV MD, Al., $aP15$ P-1 $a=5$ 172 $b=5$ 154 $c=8.959$ Å $a=74.83$ $\beta=90.43$					

рази Re₄Al₁₁ (структура типу Mn₄Al₁₁, *aP*15, *P*-1, a = 5,172, b = 5,154, c = 8,959 A, $\alpha = 74,83$, $\beta = 90,43$, $\gamma = 80,24^{\circ}$ [15]) становить < 1 мас.%.

	•	•	' TT(T)	4 1	(1 D10	DC /
	TODOMOTOR OMITTOLITA	OTOMID V OTOM	UTTUDI UTUDI		(hD)	D = (mm)
	параметри змппення			\AL1 12(1)		$I \cup 2/IIIII \cup 1$
- aotiment - recopgination	in aparite i pri onini de initi	around jerpj)***1.12(1)	(. 03/11/10/

Атом	ПСТ	x	у	Z	$B_{\rm iso},{\rm \AA}^2$
Hf	4f	1/3	2/3	0,5629(2)	0,46(1)
M1*	2a	0	0	0	0,15(1)
M2**	6 <i>h</i>	0,1700(5)	0,3400(5)	1/4	0,29(1)

M1 = 0.385(1)Re + 0.615(1)Al; **M2 = 0.459(1)Re + 0.541(1)Al

Таблиця 3 Координати і параметри зміщення атомів у структурі HfRe_{0,26(1)}Al_{1,74(1)} (hP12, P6₃/mmc, $B_{\text{overall}} = 0,024(2) \text{ Å}^2$).

Атом	ПСТ	X	у	Z
Hf	4f	1/3	2/3	0,5644(3)
M1*	2a	0	0	0
$M2^{**}$	6 <i>h</i>	0,1698(17)	0,3396(17)	1/4

*M1 = 0,155(1)Re + 0,845(1)Al; **M2 = 0,124(1)Re + 0,876(1)Al

Рисунок 3 Проєкція кристалічної структури фази $HfRe_{0.88}Al_{1,12}$ на площину *ab* і координаційні поліедри атомів <u> $HfM_{12}Hf_4$ </u> та <u> MM_6Hf_6 </u>.

На рисунку 7 зображено зарядні та розрядні криві 10 циклу після активації матеріалу) для прототипу хімічного джерела електричної енергії з анодом на основі досліджених сплавів. Електрод основі сплаву складу $Hf_{30}Re_{10}Al_{60}$ на характеризується більшою питомою розрядною ємністю (62 мА-год/г) та вищою номінальною розрядною напругою 1,35 В, ніж електрод на основі $Hf_{32}Re_{53}Al_{15}$ ($C_m = 59$ мА·год/г, E = 1,24 В). Найбільша корозійна активність як і найкраща розрядна ємність ($C_{\rm m} = 68$ мА·год/г, E = 1,35 В) спостерігається у прототипа акумулятора з електродом на основі Hf₃₀Re₁₅Al₅₅.

Гисунок 4 дифрактограма зразка $Hf_{30}Re_{15}Al_{55}$ до (синя) і після (червона) гідрування (Fe *К* α проміння).

Внаслідок гідрування простежується незначне збільшення параметрів елементарної комірки фаз Лавеса, зокрема в зразку Hf₃₀Re₁₅Al₅₅: $a = 5,2568(3) \rightarrow 5,2635(5)$ Å, $c = 8,5698(8) \rightarrow$ 8,5836(13) Å, яке свідчить про включення атомів гідрогену. Склади одержаних гідридів можна описати формулами: HfRe_{1,55}Al_{0,45}H_{1,03}, HfRe_{0,43}Al_{1,57}H_{0,75} і HfRe_{0,29}Al_{1,71}H_{0,67} для сплавів $Hf_{32}Re_{53}Al_{15}$, $Hf_{30}Re_{15}Al_{55}$ i $Hf_{30}Re_{10}Al_{60}$, відповідно. Варто зазначити, що збільшення вмісту алюмінію викликає підвищення номінальної розрядної напруги.

Рисунок 5 Розподіл елементів на поверхні зразка складу Hf₃₀Re₁₅Al₅₅ до (згори) і після (знизу) електрохімічного гідрування.

Рисунок 6 Зображення електродів після електрохімічного гідрування зразків $Hf_{32}Re_{53}Al_{15}$ (*a*), $Hf_{30}Re_{15}Al_{55}$ (*б*), $Hf_{30}Re_{10}Al_{60}$ (*в*) (SE детектор – зліва та BSE детектор – справа, збільшення в 5330 разів).

Рисунок 7 Зарядні і розрядні криві після 10 циклу для хімічного джерела електричної енергії з електродами на основі $Hf_{32}Re_{53}Al_{15}$ (чорна), $Hf_{30}Re_{15}Al_{55}$ (синя) і $Hf_{30}Re_{10}Al_{60}$ (червона).

Характер досліджених кривих та отримані електрохімічні параметри добре корелюють із серіями твердих розчинів на основі GdFe₂ та GdMn₂ [16], що кристалізуються у структурі кубічної фази Лавеса. Включення гідрогену за низьких тисків (електрохімічне гідрування) у структуру фаз Лавеса здійснюється у тетраедричні пустоти. Включення великих кількостей гідрогену призводить до руйнування вихідної структури та утворення аморфних гідридів на основі компонентів.

Подяка

Авторка вдячна н.сп. В. Кордану за допомогу у виконанні мікроструктурних досліджень та електрохімічному гідруванні зразків.

Літературні посилання

- P. Villars, K. Cenzual (Eds.), *Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds*, ASM International, Materials Park, OH, USA, Release 2021/22.
- [2] P. Villars, H. Okamoto, I. Savysyuk, K. Cenzual (Eds.), ASM Alloy Phase Diagram Database, ASM International, Materials Park OH, USA, Release 2006/2021.
- [3] X.L. Yan, X.Q. Chen, A.V. Grytsiv, P. Rogl, R. Podloucky, H.G. Schmidt, G. Giester, X.Y. Ding, *Intermetallics* 16 (2008) 16-26.
- [4] J.J. Didisheim, K. Yvon, D. Shaltiel, P. Fischer, *Solid State Commun.* 31 (1979) 47-50.
- [5] V.N. Svechnikov, V.V. Pet'kov, *Metallofizika* 64 (1976) 24-27.
- [6] E.M. Sokolovskaya, M.V. Rayevskaya, G.S. Fomin, *Metall.* 6 (1978) 150-153.
- [7] V.B. Compton, B.T. Matthias, *Acta Crystallogr*. 12 (1959) 651-654.
- [8] A. Israel, I. Jacob, J.L. Soubeyroux, D. Fruchart, H. Pinto, M. Melamud, *J. Alloys Compd.* 253/254 (1997) 265-267.
- [9] J.C. Schuster, H. Nowotny, Z. Metallkd. 71 (1980) 341-346.
- [10] A.E. Dwight, J. Less-Common Met. 34 (1974) 279-284.
- [11] *STOE WinXPOW, Version 1.2*, STOE & CIE GmbH. Darmstadt, 2001.
- [12] J. Rodriguez-Carvajal, Commission on Powder Diffraction (IUCr), Newsletter 26 (2001) 12-19.
- [13] Л. Зінько, О. Мацелко, Г. Ничипорук, Р. Гладишевський, Зб. наук. праць XVIII Наук. конф. «Львівські хімічні читання – 2021», Львів, Україна, 2021, с. H25.
- [14] J. Emsley, *The Elements*, Clarendon Press, Oxford, United Kingdom, 1991, 251 p.
- [15] S. Niemann, W. Jeitschko, Z. Naturforsch. B 48 (1993) 1767-1773.
- [16] N.O. Chorna, V.M. Kordan, A.M. Mykhailevych, O.Ya. Zelinska, A.V. Zelinskiy, K. Kluziak, R.Ya. Serkiz, V.V. Pavlyuk. Voprosy Khimii i Khimicheskoi Tekhnologii 2 (2021) 139-149.