Chemistry of Metals and Alloys

Interaction of the components in the system Hf–Re–Si

Liana ZINKO¹, Oksana MATSELKO¹*, Vasyl KORDAN¹, Galyna NYCHYPORUK¹, Roman GLADYSHEVSKII¹

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, *Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine*

* *Corresponding author. Tel.:* +380-32-2394506*; e-mail: oksana.matselko@lnu.edu.ua*

Received October 25, 2019; accepted December 18, 2019; available on-line April 1, 2020 https://doi.org/10.30970/cma12.0398

The interaction of the components in the ternary system Hf–Re–Si at 1000°C has been investigated by means of X-ray powder diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The system is characterized by the formation of solid solutions based on the binary phases. In addition to HfReSi and HfReSi2, two more ternary phases, with approximate compositions Hf23(2)Re4(1)Si73(1) (T1) and Hf71(2)Re18(3)Si11(1) (T2), were observed. According to the EDXS analysis, the highest solubility of the third component was found for HfRe2 (up to 36.4 at.% Si) and Re4Si7 (up to 23.8 at.% Hf). The ternary phase HfReSi exhibits a significant homogeneity range with an approximately constant Hf content at 1000°C (Hf29.1(3)-25.0(4)Re30.3(5)-45(2)Si40.6(8)-30(2)).

Hafnium / Rhenium / Silicon / X-ray powder diffraction / Scanning electron microscopy

Introduction

Low thermal expansion is an important characteristic of construction materials. The peculiar properties of some of the Hf–Si and Re–Si compounds [1] make the ternary Hf–Re–Si system attractive for a detailed investigation of the interaction of the components at elevated temperatures, and the consecutive temperatures, and the consecutive construction of isothermal sections of the phase diagram.

The systems ${Ti,Zr,Hf}$ –{Mn,Re} –{Si,Ge,Sn,Pb}, or $T^{IV} - T^{VII} - M^{IV}$, have not yet been thoroughly investigated. Of the 24 ternary systems, isothermal sections of the phase diagrams (mainly partial, experimental) have been constructed only for the Ti–Mn– $\{Si, Ge, Sn\}$ systems [2]. 32 ternary compounds, representing 13 structure types, 9 of them fully ordered, have been reported in the $T^{IV} - T^{VII} - M^{IV}$ systems ([3], Table 1). It should be noted that almost all of the known compounds contain Mn and the largest number of representatives, eight, has the structure type $ZrCrSi₂$.

As for the Hf–Re–Si system in particular, two ternary compounds – HfReSi (structure type ZrNiAl, space group *P*-62*m*, Pearson symbol *hP*9) [4] and HfReSi2 (ZrCrSi2, *Pbam*, *oP*48) [5] – have been reported. The boundary systems, Hf–Re, Hf–Si, and Re–Si, are well known and their phase diagrams have been constructed [6]. Crystallographic parameters of the binary and ternary compounds reported prior to this investigation are summarized in Table 2.

In this work, we present the results of a preliminary investigation of the interaction of the components in the system Hf–Re–Si at 1000°C.

Experimental

Alloys were synthesized from high-purity metals (Hf \geq 99.9 mass%, Re \geq 99.9 mass% (pressed pellets), $Si \ge 99.999$ mass%) by arc melting with a tungsten electrode, a water-cooled copper hearth and a Ti getter under argon atmosphere. After the synthesis, the ingots were sealed in quartz ampoules under vacuum, annealed at 1000°C for 1 week and quenched into cold water. Phase analysis and structure refinements were carried out using X-ray powder diffraction (XRPD) data collected on diffractometers DRON-2.0M (Fe *K*α radiation) and STOE STADI P (Cu $K\alpha_1$ radiation). The profile and structural parameters were refined by the Rietveld method, using the WinCSD program package [7]. The overall compositions of the samples and of the individual phases, in particular the solubilities of the third component in the binary phases, were investigated by means of energydispersive X-ray spectroscopy (EDXS; scanning electron microscope Tescan Vega 3 LMU equipped with an $X-Max^N20$ silicon drift detector).

Results and discussion

Twelve ternary alloys were prepared in the system Hf–Re–Si. The results of the analysis by XRPD and EDXS are summarized in Table 3; backscatteredelectron (BSE) images of selected samples, together with the compositions of the identified phases, are shown on Fig. 1.

At 1000°C, the existence of the binary phases $Hf_{21}Re_{25}$, HfRe₂, Hf₅Re₂₄, Hf₂Si, HfSi₂, and Re₄Si₇, mainly in the form of ternary solid solutions, was confirmed. These findings are in agreement with the assessed binary phase diagrams [20-22]. In addition, we observed a $Hf_5Si_3-based$ solid solution. Hf_5Si_3 exists between 1718 and 2510°C and forms *via* the peritectic reaction L + $Hf_3Si_2 \leftrightarrow Hf_5Si_3$ at 2510° C [23]. At first, this phase was considered to be stabilized by C, N, or O $[24-26]$, but later it was found to be stable as a binary phase [27]. We also observed ReSi (exists between 1650-1820°C; L + ReSi_{1.75} \leftrightarrow ReSi at 1820°C), while Hf₃Si₂ $(L \leftrightarrow Hf_3Si_2$ at 2480°C), Hf_5Si_4 $(L + Hf_3Si_2 \leftrightarrow Hf_5Si_4$ at 2320°C), and Re₂Si (L \leftrightarrow Re₂Si at 1810°C) were not detected.

The existence of the reported ternary phases HfReSi and HfReSi₂ at 1000° C was confirmed as well. In addition, two new ternary phases with approximate compositions $Hf_{23(2)}Re_{4(1)}Si_{73(1)}$ (T1) and $Hf_{71(2)}$ Re₁₈₍₃₎Si₁₁₍₁₎ (T2) were detected.

In the region 63.6-66.7 at.% Si of the system Re–Si four compounds with close compositions have been reported: triclinic $Resi_{1.75}$, monoclinic Re_4Si_7 , tetragonal $Resi_{1.8}$, and orthorhombic $Resi_{2}$. For the Rietveld refinements, performed on multiphase samples, we used the monoclinic crystal structure model.

According to the EDXS analysis, the highest solubilities of the third component were found for HfRe₂ (up to 36.4 at.% Si) and Re₄Si₇ (up to 23.8 at.%) Hf). The ternary phase HfReSi showed a significant homogeneity range at an almost constant Hf content $(Hf_{29.1(3)-25.0(4)}$ Re_{30.3(5)-45(2)}Si_{40.6(8)-30(2)}).

Compound	Structure	Pearson	Space	Unit-cell parameters, A			Ref.
	type	symbol	group	\mathfrak{a}	\boldsymbol{b}	\mathcal{C}	
$Hf_{21}Re_{25}$	$Zr_{21}Re_{25}$	hR276	$R-3c$	25.773		8.760	[8]
HfRe ₂	MgZn ₂	hP12	$P6\frac{3}{m}$	5.239		8.584	[9]
Hf_5Re_{24}	Ti ₅ Re ₂₄	cI58	$I-43m$	9.708			[10]
Hf_2Si	CuAl ₂	tI12	I4/mcm	6.553		5.186	$[11]$
Hf_5Si_3	Mn_5Si_3	hP16	$P6\frac{3}{m}$ cm	7.844		5.492	$[12]$
Hf_3Si_2	U_3Si_2	tP10	P4/mbm	6.988		3.675	$[12]$
Hf_5Si_4	Zr_5Si_4	tP36	$P_{{}_{1}}{2_{1}}{2_{1}}$	7.039		12.83	$[12]$
HfSi	FeB	oP8	Pnma	6.889	3.772	5.223	$[12]$
HfSi ₂	ZrSi ₂	oS12	Cmcm	3.672	14.57	3.641	$[12]$
Re ₂ Si	Re ₂ Si	mP24	$P2_1/c$	6.4444	9.6019	5.3898	$[13]$
					$\beta = 94.214^{\circ}$		
Re ₅ Si ₃	W_5Si_3	tI32	I4/mcm	9.53		4.81	[14]
ReSi	FeSi	cP8	$P2_13$	4.7744			$[15]$
Re ₄ Si ₇	Re ₄ Si ₇	mS44	Cm	23.167	3.14	8.3018	$[16]$
					$\beta = 94.214^{\circ}$		
Resi _{1.75}	$Resi_{1.75}$	aP6	P ₁	3.12	3.138	7.67	$[17]$
				$\alpha = 90^{\circ}$	β = 90.1°	$\gamma = 90^{\circ}$	
$Resi_{1.8}$	MoSi ₂	tI6	I4/mmm	3.132		7.681	$[18]$
Resi ₂	Resi ₂	oI6	<i>Immm</i>	3.128	3.144	7.677	$[18]$
HfReSi	ZrNiAl	hP9	$P-62m$	6.927		3.391	$[4]$
HfReSi ₂	ZrCrSi ₂	oP48	Pbam	9.106	10.016	8.062	$[5]$

Table 2 Crystallographic parameters of binary and ternary compounds in the systems Hf–Re, Hf–Si, Re–Si, Hf–Re–Si. Binary phases stable at 1000°C are highlighted.

Fig. 1 Microstructures of selected samples (BSE images) and compositions of the observed phases.

Table 3 Results of the phase analysis of the synthesized samples.

a nominal composition and overall composition according to elemental mapping (when available);
b phase identified by XRPD and composition according to EDXS (when available)

Conclusions

The system Hf–Re–Si at 1000°C is characterized by significant solubility of the third component in the binary phases. In addition to the already known compounds, two new ternary phases with approximate compositions $Hf_{23(2)}Re_{4(1)}Si_{73(1)}$ (T1) and $Hf_{71(2)}$ Re₁₈₍₃₎Si₁₁₍₁₎ (T2) were observed. Their structures will be the topic of a future publication.

Acknowledgement

This work was supported by the Ministry of Education and Science of Ukraine under the grant No. 0118U003609.

References

- [1] I. Engström, B. Lönnberg, *J. Appl. Phys.* 63 (1988) 4476-4484.
- [2] SpringerMaterials (*https://materials.springer.com*).
- [3] P. Villars, K. Cenzual (Eds.), *Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds*, Release 2017/18, ASM International, Materials Park, OH, 2017.
- [4] Y.P. Yarmolyuk, E.I. Gladyshevskii, *Dopov. Akad. Nauk Ukr. RSR, Ser. B* (1974) 1030-1032.
- [5] Y.P. Yarmolyuk, M. Sikiritsa, L.G. Akselrud, L.A. Lysenko, E.I. Gladyshevskii, *Sov. Phys. Crystallogr.* 27 (1982) 652-653.
- [6] P. Villars, H. Okamoto, K. Cenzual (Eds.), *ASM Alloy Phase Diagram Database*, Release 2006/2018, ASM International, Materials Park, OH, 2018.
- [7] L. Akselrud, Yu. Grin, *J. Appl. Crystallogr.* 47 (2014) 803-805.
- [8] K. Cenzual, E. Parthé, R.M. Waterstrat, *Acta Crystallogr. C* 42 (1986) 261-266.
- [9] V.B. Compton, B.T. Matthias, *Acta Crystallogr.* 12 (1959) 651-654.
- [10] E.M. Savitskii, M.A. Tylkina, I.A. Tsyganova, E.I. Gladyshevskii, M.P. Mulyava, *Russ. J. Inorg. Chem.* 7 (1962) 831-832.
- [11] E.E. Havinga, H. Damsma, P. Hokkeling, *J. Less-Common Met.* 27 (1972) 169-186.
- [12] O.G. Karpinskii, B.A. Evseyev, *Russ. Metall.* (1969) 128-130.
- [13] T. Siegrist, J.E. Greedan, J.D. Garrett, G. Wenhe, C.V. Stager, *J. Less-Common Met.* 171 (1991) 171-177.
- [14] A.G. Knapton, *Plansee Proc. Pap. Plansee Semin. "de Re Met.", 3rd*, 1959, pp. 412-418.
- [15] V.M. Fedyna, R.E. Gladyshevskii, *Visn. Lviv. Univ., Ser. Khim.* 55 (2014) 87-92.
- [16] S. Harada, H. Hoshikawa, K. Kuwabara, K. Tanaka, E. Okunishi, H. Inui, *Philos. Mag.* 91 (2011) 3108-3127.
- [17] U. Gottlieb, B. Lambert Andron, F. Nava, M. Affronte, O. Laborde, A. Rouault, R. Madar, *J. Appl. Phys.* 78 (1995) 3902-3907.
- [18] J.L. Jorda, M. Ishikawa, J. Muller, *J. Less-Common Met.* 85 (1982) 27-35.
- [19] T. Siegrist, F. Hulliger, G. Travaglini, *J. Less-Common Met.* 92 (1983) 119-129.
- [20] T.B. Massalski (Ed.), *Binary Alloy Phase Diagrams*, Second Edition, ASM International, Materials Park, Ohio, 1990, Vol. 3, pp. 2105- 2106.
- [21] T.B. Massalski (Ed.), *Binary Alloy Phase Diagrams*, Second Edition, ASM International, Materials Park, Ohio, 1990, Vol. 3, pp. 2111- 2112.
- [22] T.B. Massalski (Ed.), *Binary Alloy Phase Diagrams*, Second Edition, ASM International, Materials Park, Ohio, 1990, Vol. 3, pp. 3204- 3205.
- [23] E. Brukl, *Tech. Rep. AFML-TR-65-2*, Air Force Materials Laboratory, WPAFB (OH), 1968, 72 p.
- [24] A.K. Shurin, N. Todorov, *Metallofiz.* 33 (1971) 100-102.
- [25] R. Kieffer, F. Benesovsky, *Powder Metall.* (1/2) (1958) 145-171.
- [26] H. Nowotny, E. Laube, T. Kieffer, F. Benesovsky, *Monatsh. Chem.* 89 (1958) 701-707.
- [27] B.P. Bewlay, J.A. Sutliff, R.R. Bishop, *J. Phase Equilib.* 20 (1999) 109-112.