Crystal structure and hydrogenation properties of the hexagonal Dy_2M_{17} and $Dy_2M_{17}C_x$ (M = Fe, Co, Ni; x < 0.5) compounds

 $\label{eq:conditional} Volodymyr\ LEVYTSKYY^1*,\ Volodymyr\ BABIZHETSKYY^1,\ Oksana\ MYAKUSH^1,\ Bogdan\ KOTUR^1,\ Ihor\ KOVAL'CHUK^2$

Dedicated to Evgen I. Gladyshevskii (1924-2012)

Received November 15, 2013; accepted June 26, 2014; available on-line November 10, 2014

The crystal structures of the Dy_2M_{17} (M=Fe, Co, Ni) compounds were investigated from single crystal X-ray diffraction data (Th_2Ni_{17} type structure, space group $P6_3/mmc$). The Dy_2M_{17} binaries (M=Co, Ni) dissolve limited amounts of carbon, up to 0.2 (M=Co) and 0.4 (M=Ni) at. C/f.u. The hydrogenation properties of the parent compounds and their carbides were investigated. Dy_2M_{17} (M=Co, Ni) absorb 3.4 (M=Co) and 3.5 (M=Ni) at. H/f.u. at 5 MPa hydrogen pressure. The carbides $Dy_2M_{17}C_x$ (M=Co, Ni) absorb 2.7 (M=Co) and 2.8 (M=Ni) at. H/f.u. The synthesized carbides, hydrides and carbohydrides preserve the crystal structure of the parent compounds.

Hydrides / Carbides / Crystal structure / X-ray diffraction

Introduction

Intermetallic rare-earth (R) and 3d-transition-metalrich compounds R_2M_{17} (M = Fe, Co, Ni) are widely known in science and technology for their unique physical properties [1]. A distinctive feature of these compounds is their ability to considerably change their properties upon introduction of light element atoms (H, N or C) into voids of the crystal lattice.

Most of the R_2M_{17} (M = Fe, Co, Ni) compounds crystallize in hexagonal Th₂Ni₁₇-type or rhombohedral Th₂Zn₁₇-type structures [2,3]. These two structure types are derived from the CaCu₅ (RM_5) parent type by replacement of part of the large atoms (R) by pairs of small atoms (M–M). Since the composition can deviate from the ideal R_2M_{17} stoichiometry and since the degree of disorder is known to depend on the method of preparation, special attention is paid to the substitution rate of the rare-earth atoms during the structure refinements [2-5].

Among the family of R_2M_{17} and related compounds, the $R_2\text{Fe}_{17}$ compounds and their carbides $R_2\text{Fe}_{17}\text{C}_x$ and hydrides $R_2\text{Fe}_{17}\text{H}_x$ are the most studied compounds as promising materials for permanent magnets. They exhibit large magnetic moments originating from the 3d sublattice and magnetocrystalline anisotropy arising from the rare-

earth sublattice. On account of the different atomic radii, two different types of structure are observed for binary R_2 Fe₁₇ compounds: the rhombohedral Th₂Zn₁₇ and the hexagonal Th₂Ni₁₇ [3,6] type. For example, for Dy₂Fe₁₇ Buschow reported a Th₂Ni₁₇-type structure for samples annealed at 1000°C [3]. In this structure the Dy atoms occupy the (2b) and (2d) sites, while the Fe atoms occupy (4f), (6g), (12j), and (12k) positions. Depending on the preparation conditions and the Dy:Fe stoichiometry, in addition to the Th₂Ni₁₇-type structure a Th₂Zn₁₇-type structure may form [6]. The as-cast, stoichiometric sample was single-phase with Th₂Ni₁₇ structure, whereas in off-stoichiometric samples, annealed at 1050°C, a mixture of Th₂Ni₁₇and Th₂Zn₁₇-type structures was observed. The amount of Th₂Zn₁₇-type structure increased with increasing Dy content [6]. The investigation of the crystal structure of Dy₂Fe₁₇ by means of X-ray single crystal diffraction [7] indicated small deviations from 2:17 stoichiometry (Dy_{1.85}Fe_{17.30} composition) and a disordered variant of the hexagonal Th2Ni17-type structure (structure type Y₂Fe_{17.3}, space group $P6_3/mmc$, Z = 2 [8]). In this structure, a Fe dumbbell site (4e) has appeared around the (2b) Dy site, whereas an additional Dy site (2c) centers the (4f) Fe dumbbell. At the same time the (12j) Fe site was found to be split into two sites.

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, UA-79005 Lviv, Ukraine

² Physico-Mechanical Institute of NAS of Ukraine, Naukova St. 5, UA-79060 Lviv, Ukraine

^{*} Corresponding author. E-mail: v.levyckyy@gmail.com

The R_2 Fe₁₇ compounds absorb a considerable amount of hydrogen, forming stable hydrides R_2 Fe₁₇H_x [7,9,10] that preserve the structure of the parent Hydrogen is accommodated in intermetallic. octahedral and tetrahedral voids preferably formed by rare-earths. Isnard et al. [10] investigated several R_2 Fe₁₇D_x compounds by neutron diffraction and found that the octahedral hole site (6h) is favored for the hydrides (deuterides). Substantial occupation of the tetrahedral hole site (12i) occurs only for higher H concentrations (x > 3). A very interesting comparison can be made with the similar ternary carbides R_2 Fe₁₇C_x with hexagonal Th₂Ni₁₇-type structures [11], in which carbon is accommodated in the same sites as hydrogen in the R_2 Fe₁₇H_x compounds. A refinement of the structure of Dy₂Fe₁₇C_{0.5} from neutron diffraction data [12] showed that the C atoms occupy the (6h) interstitial site in the Th₂Ni₁₇ hexagonal structure. Haije et al. [13] reported that the crystal structure of $Dy_2Fe_{17}C_x$ changes with increasing x from hexagonal (Th₂Ni₁₇-type) to rhombohedral (Th₂Zn₁₇-type).

The Dy_2Co_{17} compound crystallizes in two polymorphic forms, a high-temperature phase with Th_2Ni_{17} -type structure and a low-temperature phase with Th_2Zn_{17} -type structure [5]. In annealed samples the Th_2Ni_{17} -type was observed as a secondary phase together with the Th_2Zn_{17} -type. When the annealing temperature was reduced, for example from $1000^{\circ}C$ to

750°C, a remarkable increase of the fraction of the rhombohedral Th_2Zn_{17} -type was observed [3]. A single-phase Dy_2Co_{17} sample of the Th_2Ni_{17} type was obtained by rapid quenching of the sample in water [3]. We obtained a Dy_2Co_{17} single crystal isotypic with Th_2Ni_{17} from an alloy quenched after annealing at $800^{\circ}C$ [14] (see Table 1).

The Dy_2Ni_{17} compound only occurs in the hexagonal Th_2Ni_{17} -type structure [3].

Contrasting with the situation for R_2 Fe₁₇ compounds, experimental and theoretical works on R_2 Co₁₇ and R_2 Ni₁₇ hydrides and carbides are very few. Only for R_2M_{17} (R = Y, Ce, Sm; M = Co, Ni) [15] and R_2 Co₁₇ (R = Pr, Sm) [16,17], hydrides with the Th₂Zn₁₇-type structure have been reported. Hydrides and carbides of the Dy₂ M_{17} (M = Co, Ni) compounds have not yet been investigated.

We found the Dy_2M_{17} (M = Fe, Co, Ni) intermetallics and isostructural $Dy_2M_{17}C_x$ carbides during a systematic investigation of Dy-{Fe, Co, Ni}-C ternary systems at 800°C. In this work we carried out X-ray single crystal diffraction of Dy_2M_{17} (M = Fe, Co, Ni) binary compounds, and explored the solubility of carbon in them. The hydrogenation capacity of the Dy_2M_{17} and $Dy_2M_{17}C_x$ alloys and the crystal structures of the synthesized hydrides, carbides and carbohydrides investigated too.

Table 1 Crystal data and structure refinement parameters for Dy_2M_{17} (M = Fe, Co, Ni).

Empirical formula	Dy _{1.79(3)} Fe _{16.84(1)}	Dy _{1.73(3)} Co ₁₇ [14]	Dy ₂ Ni ₁₇		
Space group	P6₃/mmc				
Z	2				
Lattice parameters					
$a, \mathrm{\AA}$	8.330(2)	8.307	8.332(1)		
c, Å	8.065(2)	8.045	8.069(1)		
Unit cell volume: <i>V</i> , Å ³	484.6(1)	480.8	485.1(1)		
Calculated density, g·cm ⁻³	8.734	9.165	9.057		
Absorption coefficient, mm ⁻¹	39.672		47.199		
Crystal size, mm ³	$0.15 \times 0.12 \times 0.08$		0.16×0.11×0.09		
Radiation and wavelength, nm	Mo <i>K</i> α, 0.071073				
Diffractometer	STOE IPDS II				
Refined parameters	24		25		
Refinement					
$2\theta_{\rm max}$ and $(\sin\theta/\lambda)_{\rm max}$	52.64; 0.624		58.29; 0.685		
h, k, l	-10≤ <i>h</i> ≤9		-11≤ <i>h</i> ≤11		
	-10≤ <i>k</i> ≤10		-11≤ <i>k</i> ≤11		
	-10≤ <i>l</i> ≤10		-11≤ <i>l</i> ≤10		
Collected reflections	2306		3371		
Independent reflections	$200 (R_{int} = 0.084)$		$260 (R_{int} = 0.092)$		
Reflections with $I_o \ge 2\sigma(I_o)$	$163 (R_{\sigma} = 0.023)$		191 ($R_{\sigma} = 0.026$)		
Final R_1 indices (R_1 all data)	0.050 (0.08)		0.057 (0.12)		
Weighted wR_2 factor(wR_2 all data)	0.061 (0.068)		0.071 (0.085)		
Goodness-of-fit on F^2	1.188		1.103		
$\Delta \rho_{\rm max}$ and $\Delta \rho_{\rm min}$, e·Å ⁻³	+4.16; -1.53		+2.33; -2.16		

Experimental details

Powders of the initial elements of high purity (not less than 99.99 wt.%) were pressed into tablets and arcmelted under Ar. The alloys were homogenized in evacuated quartz ampoules at 800°C in a muffle furnace for 30 days. After the heat treatment the ampoules with the samples were quenched in cold water.

Phase analysis of the samples was carried out using X-ray diffraction powder data obtained with a DRON-2.0 (Fe K_{α}) diffractometer. The STOE WinXPOW [18] program package was used. Single crystals were isolated from crushed samples after the thermal treatment. The single crystals were first examined by the Buerger precession technique, in order to establish their suitability for the subsequent data collection. The single crystal diffraction data of Dy_2M_{17} (M = Fe, Co, Ni) were collected at room temperature on a STOE IPDS II image plate diffractometer with monochromated Mo $K\alpha$ radiation. The starting atomic parameters were taken from the ordered Th₂Ni₁₇-type structure [2] and subsequently refined with the program SHELX-97 [19] in the WinGX program package [20] (full-matrix leastsquares refinement on F^2) with anisotropic atomic displacements. The crystal structures of the Dy_2M_{17} (M = Fe, Co, Ni) compounds were also confirmed by the X-ray powder diffraction method, using the WinCSD software package [21].

Metallographic, quantitative and qualitative composition analyses of polished samples and single crystals were performed by energy-dispersive X-ray spectroscopy (EDXS) with a scanning electron microscope REMMA-102-2. Only the dysprosium, iron, nickel, and cobalt contents were investigated.

The hydrides were synthesized under 5 MPa hydrogen pressure, by exposure to hydrogenation at 400°C for 3 h after preliminary activation of the samples in vacuum at 550°C for 30 min. The amount of absorbed hydrogen was determined volumetrically.

Results and discussion

The crystal structure of the Dy_2M_{17} (M = Fe, Co, Ni) compounds was investigated on X-ray single crystal and powder diffraction data, and the structures of the carbides and hydrides were studied by the X-ray powder diffraction method. Fig. 1 shows the evolution of the X-ray diffraction patterns from the Dy_2Ni_{17} binary parent compound to Dy_2Ni_{17} carbide, hydride and carbohydride.

The crystal structure of the Dy_2Ni_{17} compound was investigated for the first time from single crystal X-ray diffraction data. Results of structural studies of Dy_2Fe_{17} and Dy_2Co_{17} single crystals have been reported earlier [7,14]. The crystal structure analysis of the Dy_2M_{17} (M=Fe, Co, Ni) compounds was carried out starting from the atomic positions of

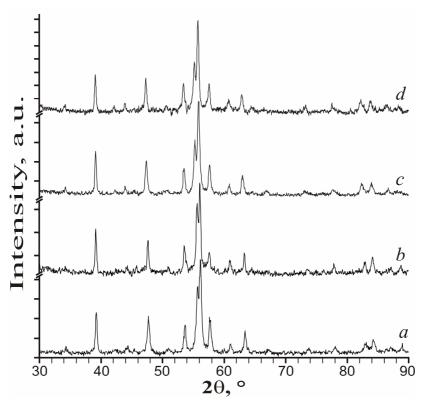


Fig. 1 X-ray diffraction profiles of the Dy_2Ni_{17} binary parent compound (a) and its carbide (b), hydride (c) and carbohydride (d).

the ordered Th_2Ni_{17} type [2], taking into account the possibility of a disordered variant, as previously observed for $Y_2Fe_{17.3}$ [7,8]. The crystal structure refinement showed that the Dy_2M_{17} (M=Fe, Co, Ni) compounds crystallize in the Th_2Ni_{17} structure type. Relevant crystallographic data for the Dy_2M_{17} (M=Fe, Co, Ni) compounds are listed in Table 1. The atomic coordinates and thermal displacement parameters for Dy_2M_{17} (M=Fe, Co, Ni) are presented in Table 2. The crystal structure investigations revealed that only the Dy_2Ni_{17} compound had the ideal R:M stoichiometry. A small deviation from 2:17 stoichiometry was observed for both Dy_2Fe_{17} and Dy_2Co_{17} .

Single crystals of the Dy₂Fe₁₇ compound were obtained from alloys annealed at 800°C. The refinement of the crystal structure of Dy₂Fe₁₇ showed partial occupancy of the (2b), (2c), and (4f) sites by Dy1, Dy2, and Fe1 atoms, respectively (see Table 2), which led to the composition Dy_{1.79(3)}Fe_{16.84(1)}. The results of the structure refinement reported in [7] led to the composition $Dy_{1.85}Fe_{17.30}$, which can be explained by different conditions of synthesis. The authors of [7] extracted their Dy₂Fe₁₇ single crystals from solidified polycrystalline ingots prepared by induction melting and remelting in an electric resistance furnace with a large temperature gradient and slow cooling from the melting point. It can be assumed that some differences between the crystal structure obtained in [7] and ours indicate that the Dy₂Fe₁₇ compound has a small homogeneity range leading to splitting of the (2b) and (4f) sites into (2b) + (4e) and (4f) + (2c).

During the refinement of the crystal structure of Dy₂Co₁₇ high values of the displacement parameters

of the Dy atoms were observed. The refinement of the occupancies of sites Dy1 and Dy2 led to 83(3) and 90(3) %, respectively, giving the composition $Dy_{1.73(3)}Co_{17}$ [14]. Thus, the result of the refinement is somewhat different from $R_{1.89}Co_{17}$, reported by Khan [5] for the isotypic compound Er_2Co_{17} .

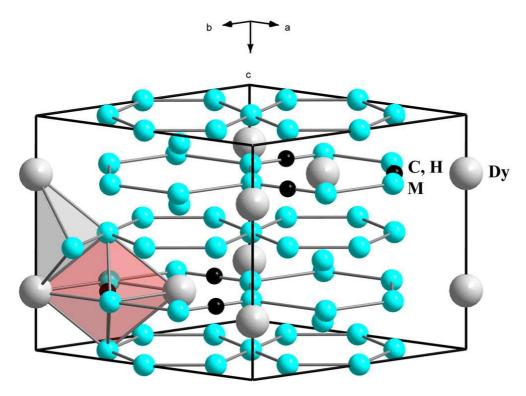
Contrary to $\text{Er}_{1.89}\text{Co}_{17}$, in the structure of $\text{Dy}_{1.73(3)}\text{Co}_{17}$ the (2d), (4f), (12k) and (12j) sites are unfilled. The authors of [17] report an ordered model for the crystal structures of $R_2\text{Co}_{17}$ belonging to the $\text{Th}_2\text{Ni}_{17}$ type of structure [2]. Differently from these data, in the investigated structure of $\text{Dy}_{1.73(3)}\text{Co}_{17}$ the positions of the Dy atoms are not fully occupied [14].

Our systematic investigation the Dy-{Fe, Co, Ni}-C ternary systems at 800°C showed low solubility of carbon in the Dy_2M_{17} (M = Fe, Co, Ni) binary compounds, leading to the composition $Dy_2M_{17}C_x$ (x < 0.5): x = 0.5 (M = Fe) [12], x = 0.2 (M = Co) and x = 0.4 (M = Ni). The $\text{Dy}_2 M_{17} \text{C}_x$ carbides preserve the Th₂Ni₁₇-type structure (see Fig. 1). The crystal structure of $Dy_2Fe_{17}C_{0.5}$ has been investigated by neutron powder diffraction [12]. This allowed refining the crystallographic coordinates of all the atoms, including carbon. It is impossible to refine the positions of the carbon atoms from X-ray diffraction data for samples with small carbon content. However, it can be assumed that, similarly to $Dy_2Fe_{17}C_{0.5}$, the C atoms in the isostructural $Dy_2M_{17}C_x$ carbides also occupy the octahedral site (6h: $x 2x \frac{1}{4}$, $x \sim 0.833$) in the Th₂Ni₁₇-type structure. The unit cell of the Dy₂Ni₁₇ parent compound is presented in Fig. 2. The octahedral (6h position) and tetrahedral (12i position) voids preferred by the small C and H atoms are indicated.

Table 2 Atomic coordinates and displacement parameters for Dy_2M_{17} ($M = Fe^a$, Co^b [14], Ni^c).

Atom	Site	Occupation	х	у	z	$U_{\rm eq}$, Å ²
Dy1	2 b	0.89(2) ^a 0.83 ^b 1.0 ^c	0	0	1/4	0.007(1) ^a 0.008 ^b 0.009(2) ^c
Dy2	2 d	0.90(1) ^a 0.90 ^b 1.0 ^c	1/3	2/3	3/4	0.008(1) ^a 0.010 ^b 0.009(1) ^c
<i>M</i> 1	4 <i>f</i>	0.92(1) ^a 1.0 ^{b, c}	1/3	2/3	0.1026(2) ^a 0.1029 ^b 0.1033(7) ^c	0.011(2) ^a 0.018 ^b 0.016(2) ^c
<i>M</i> 2	6 g	1.0	1/2	0	0	0.010(1) ^a 0.012 ^b 0.013(1) ^c
<i>M</i> 3	12 <i>j</i>	1.0	0.3286(3) ^a 0.3279 ^b 0.3280(3) ^c	0.9594(2) ^a 0.9591 ^b 0.9569(7) ^c	1/4	0.011(1) ^a 0.017 ^b 0.018(2) ^c
<i>M</i> 4	12 k	1.0	0.1651(2) ^a 0.1654 ^b 0.1653(6) ^c	0.3302(4) ^a 0.3309 ^b 0.3306(12) ^c	0.9807(3) ^a 0.9800 ^b 0.9788(8) ^c	0.010(2) ^a 0.013 ^b 0.015(2) ^c

The investigated binary Dy_2M_{17} (M = Co, Ni) samples absorb 3.4 (M = Co) and 3.5 (M = Ni)at. H/f.u. under 5 MPa hydrogen pressure, preserving the crystal structure of the parent compounds. The hydrogen absorption capacity of the Dy_2M_{17} (M = Co, Ni) alloys is close to that of the isostructural compound Ho₂Fe₁₇ (3.5 at. H/f.u. at 5 MPa) [10]. Dy₂Fe₁₇ absorbs less hydrogen, but at a lower hydrogen pressure: 3.0 at. H/f.u. at 1 MPa [7]. Hydrogenation of the $\mathrm{Dy}_2 M_{17}$ compounds causes small changes of the interatomic distances and increases the unit cell volume (Table 3). The positional parameters of the hydrogen atoms were not refined. Taking into account the data from the neutron diffraction investigation of the crystal structure of Ho₂Fe₁₇D_{3,6} [10], it can be assumed that the hydrogen atoms in $Dy_2M_{17}H_r$ hydrides also fully occupy the octahedral hole site (6h: $x 2x \frac{1}{4}$, x = 0.839) and partially occupy the tetrahedral hole site (12*i*: x 0 0, x = 0.137) in the Th₂Ni₁₇-type structure (Fig. 2).


The synthesized carbides $Dy_2Co_{17}C_{0.2}$ and $Dy_2Ni_{17}C_{0.4}$ absorb 2.7 and 2.8 at. H/f.u., respectively. The obtained carbohydrides occur in the same hexagonal Th_2Ni_{17} -type structure. Their lattice parameters are given in Table 3. The lattice expansion upon carbohydrogenation is anisotropic. The expansion in the basal a-b plane is larger than along the c-axis, indicating stronger interaction between the layers of metal atoms along the c-axis.

A comparison with the crystal structure of the isostructural R_2 Fe₁₇C_x from neutron diffraction data

[11] and $R_2\text{Fe}_{17}D_x$ [10] shows that the octahedral hole site (6h: $x 2x ^{1/4}$, $x \sim 0.833$) is favored by the carbon and deuterium (hydrogen) atoms in the carbides and deuterides (hydrides). Substantial occupation of the tetrahedral hole sites (12i: $x \circ 0$, $x \sim 0.14$) only occurs for higher C and D(H) concentrations: x > 3 at. H(C)/f.u. The carbon and hydrogen atoms probably occupy the same sites (6h: $x \circ 2x ^{1/4}$, $x \sim 0.833$) in the hexagonal Th₂Ni₁₇-type structure. The addition of carbon to the binary Dy₂ M_{17} alloys decreased the hydrogen capacity (see Table 3) under the same hydrogenation conditions.

Conclusions

- 1. X-ray single-crystal diffraction of the Dy_2M_{17} (M = Fe, Co, Ni) binary compounds confirmed their crystallization in the Th_2Ni_{17} -type structure (space group $P6_3/mmc$).
- 2. The compounds exhibit low solubility of carbon: 0.2 (M = Co) and 0.4 (M = Ni) at C/f.u. The octahedral holes (6h: $x 2x \frac{1}{4}$, $x \sim 0.833$) in the crystal structures are occupied by carbon atoms in $\text{Dy}_2 M_{17} \text{C}_x$ (M = Co, Ni).
- 3. The hydrides $Dy_2Co_{17}H_{3.4}$, $Dy_2Ni_{17}H_{3.5}$, $Dy_2Co_{17}C_{0.2}H_{2.8}$ and $Dy_2Ni_{17}C_{0.4}H_{2.7}$ were obtained under 5 MPa hydrogen pressure after preliminary activation of the parent binary samples at 550°C for 30 min.

Fig. 2 Unit cell of ideal Dy₂ M_{17} (M = Co, Ni) with Th₂Ni₁₇-type structure. The octahedral (6h: $x 2x \frac{1}{4}$, $x \sim 0.833$) and tetrahedral (12i: x 0 0, $x \sim 0.14$) hole sites preferred by C and H atoms are indicated.

Table 3 Unit cell parameters (from X-ray powder diffraction data) and their changes (Δ) for the Dy ₂ M_{17} ($M = \text{Fe}$,
Co, Ni) parent compounds and their carbides, hydrides and carbohydrides.

Compound	a, Å	c, Å	<i>V</i> , Å ³	$\Delta a/a_0$ (%)	$\Delta c/c_0$ (%)	$\Delta V/V_0$ (%)	Ref.
Dy ₂ Fe ₁₇	8.460	8.325	516.0				[12]
$Dy_2Fe_{17}C_{0.5}$	8.490	8.329	519.9	0.35	0.05	0.76	[12]
$Dy_2Fe_{17}H_3$	8.546	8.343	527.7			2.27	[7]
Dy ₂ Co ₁₇	8.328	8.125	488.0				[3]
	8.330(1)	8.149(1)	489.6(2)				a
$Dy_2Co_{17}C_{0.2}$	8.339(1)	8.147(2)	490.7(3)	0.11	0.02	0.22	a
$Dy_2Co_{17}H_{3.4}$	8.3966(6)	8.1604(2)	498.3(1)	0.80	0.14	1.78	a
$Dy_2Co_{17}C_{0.2}H_{2.8}$	8.418(2)	8.165(2)	501.1(2)	1.06	0.20	2.34	a
Dy ₂ Ni ₁₇	8.299	8.037	479.4				[3]
	8.302(1)	8.034(2)	479.5(2)				a
$Dy_2Ni_{17}C_{0.4}$	8.317(4)	8.052(3)	482.3(6)	0.18	0.22	0.58	a
$Dy_2Ni_{17}H_{3.5}$	8.371(1)	8.049(1)	488.5(2)	0.83	0.19	1.90	a
$Dy_2Ni_{17}C_{0.4}H_{2.7}$	8.3789(8)	8.054(1)	489.7(2)	0.93	0.25	2.13	a

^a present investigation

4. $\text{Dy}_2M_{17}\text{C}_x$ carbides exhibit lower hydrogen sorption capacity than the parent binaries Dy_2M_{17} . This is probably the result of C(H) occupation of the same octahedral voids in the hexagonal $\text{Th}_2\text{Ni}_{17}$ -type structure (site 6h: $x \, 2x^{1/4}$, $x \sim 0.833$) for (C+H) concentrations ≤ 3 at./f.u. For (C+H) or H concentrations > 3 at./f.u. part of the tetrahedral voids (site 12i: $x \, 0 \, 0$, $x \sim 0.14$) are occupied by H atoms too.

All of the synthesized carbides, hydrides and carbohydrides preserve the structure of the parent binary Dy_2M_{17} compounds. The lattice expansion during inclusion of C and/or H atoms is anisotropic. It is larger in the basal a-b plane than along the c-axis.

References

- [1] K.H.J. Buschow, Rep. Prog. Phys. 40 (1977) 1179-1256.
- [2] J.V. Florio, N.C. Baenziger, R.E. Rundle, *Acta Crystallogr*. 9 (1956) 367-372.
- [3] K.H.J. Buschow, *J. Less-Common Met.* 11 (1966) 204-208.
- [4] D. Givord, F. Givord, R. Lemaire, W.J. James, J.S. Shah, *J. Less-Common Met.* 29 (1972) 389-396.
- [5] Y. Khan, Acta Crystallogr. B 29 (1973) 2502-2507.
- [6] W. Steiner, A. Weihs, *J. Less-Common Met.* 45 (1976) 143-153.
- [7] I. Tereshina, S. Nikitin, W. Suski, J. Stepien-Damm, W. Iwasieczko, H. Drulis, K. Skokov, J. Alloys Compd. 404-406 (2005) 172-175.
- [8] O. Moze, R. Caciuffo, B. Gillon, G. Calestani, F.E. Kayzel, J.J. Franse, *Phys. Rev. B* 50 (1994) 9293-9299.

- [9] S. Wirth, R. Skomski, J.M.D. Coey, *Phys. Rev. B* 55 (1997) 5700-5707.
- [10] O. Isnard, S. Miraglia, J.L. Soubeyroux, D. Fruchart, A. Stergiou, J. Less-Common Met. 162 (1990) 273-284.
- [11] G. Block, W. Jeitschko, *J. Solid State Chem.* 70 (1987) 271-280.
- [12] J.L. Yang, B.S. Zhang, Y.F. Ding, C.T. Ye, C. Lin, H.W. Jiang, *Mod. Phys. Lett. B* 6 (1992) 399-403.
- [13] W.G. Haije, T.H. Jacobs, K.H.J. Buschow, J. Less-Common Met. 163 (1990) 353-359.
- [14] V. Levytskyy, A. Kostetska, V. Babizhetskyy, B. Kotur, R. Serkiz, *Visn. Lviv. Univ., Ser. Chem.* 54 (2013) 19-27
- [15] H. Fujii, M. Akayama, K. Nakao, K. Tatami, J. Alloys Compd. 219 (1995) 10-15.
- [16] J. Evans, C.E. King, I.R. Harris, J. Mater. Sci. 20 (1985) 817-820.
- [17] M. Borowiec, Cz. Kapusta, M. Jasiurkowska, A. Lemański, J. Zukrowski, P.C. Riedi, *J. Alloys Compd.* 442 (2007) 362-364.
- [18] Stoe & Cie. STOE Win XPOW (Version 2.10). 2004.
- [19] G.M. Sheldrick, SHELXL-97 a Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [20] L. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838.
- [21] L.G. Akselrud, P.Yu. Zavalii, Yu.N. Grin, V.K. Pecharsky, B. Baumgartner, E. Wölfel, *Mater. Sci. Forum* 133-136 (1993) 335-340.