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The holmium alumosilicide HoAL ¢Siy», was synthesized by arc melting and subsequent aralimg at 600°C.
Its crystal structure was studied by X-ray powder dffraction and identified as BaPh, type: Pearson symbol
hR36, space grougR-3m, a = 6.12537(7)c = 20.9526(3) A. The structure is close-packed amnsists of one-
atom thick close-packed layers of composition Ho(ASi); in h,c stacking, with 9 layers in the translation
period along [001]. The coordination polyhedra arecuboctahedra (sites Ho2 andV2) and anticuboctahedra
(sites Hol andM1). For the Ho atoms the coordination polyhedra arebuilt up exclusively of Al/Si atoms,

whereas for the latter the composition of the polyédra is Ho,Ms.

Holmium / Aluminum / Silicon / X-ray powder diffrac tion / Close-packed structure

1. Introduction

With the exception of Eu-Al, the—Al systems, where

R is a rare-earth metal, are characterized by the
formation of binary compound®Al; [1,2]. As can be
seen fronirable ], the compounds with light rare earths
form only one modification and their crystal sturet
belongs to the hexagonal Mid type [3]. The
aluminides with heavy rare earths form from one to
three different modifications at room temperatut (
high temperature (ht), and/or high pressure (hpe T
crystal structures are all close-packed but betorfgur
different structure types: cubic ¢Awu [4], hexagonal
TiNi3 [5], trigonal BaPb[6], and trigonal HOAJ[7].

A representative of the structure type BaPhs
also been reported in the ternary system Ho-Al-Ge
(compound HoAlGey, [8]), whereas ternary
compounds with the ratiB:(AI+{Si,Ge}) = 1:3 in the
systems Er—Al-Si and Yb-Al-{Si,Ge} were found to
adopt a slightly modified variant of the hexagonal
PuAl; type [9] (compounds ElAl2gSh., [10],
YDo.975Al 265002 [11], and Y1y oAl sGey 2 [11]).

In this work we present the results of a strudtura
investigation of the ternary alumosilicide HeASij ».

The existence of several ternary compounds has been

reported in the Ho—AI-Si systeffi,12-14] (Table 2.
The compositions of the compounds reported as
~HoAIl,Si (M phase) and ~HeAI;Siss (K phase)
were later corrected to HAI3Si, and HOAIS,
respectively, whereas ~kgAls, Sizo (T phase) may
represent the compound d,Si. The compound
studied in this work corresponds to the so-called
N phase (~HgAl 14,Si) found in[12].
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2. Experimental

Alloys with a total mass of 1 g were synthesizexhfr
high-purity metals (He 99.83, Al>99.998, and
Si>99.999 wt.%) by arc-melting in a water-cooled
copper crucible under a purified argon atmosphere,
using Ti as a getter and a tungsten electrode. To
achieve high efficiency of the interaction betwekea
components, the samples were melted twice. The
ingots were annealed at 600°C under vacuum inzjuart
ampoules for 1 month and subsequently quenched in
cold water.

Phase and structural analyses were performed
based on X-ray powder diffraction data collectedaon
diffractometer STOE STADI P (Cko, radiation,
wavelength 42 =1.5406 A) in the angular range
6<20<110.625° with a step of 0.015° and scan time
375s. The structure was refined by the Rietveld
method, using the program DBWS-980[21].
Structure drawings were made with the program
ATOMS [22].

3. Results and discussion

The X-ray diffraction phase analysis showed that th
alloy HosAl10Sis was single-phase, whereas the alloys
of neighboring compositions were found to contdin a
least two phases. The crystal structure of the new
intermetallide HoAJ,Si, (x=0.2), belongs to the
rhombohedral structure type BaPIn the prototype,
the Pb atoms occupy two sites. During the refingmen
of the structure of the alumosilicide no attempt

Chem. Met. Alloy$ (2013)



S. Pukas, R. Gladyshevskii, The alumosilicide Hg8l »

Table 1 Structure types of binaigAl ; and ternarRAl ;.

Siy andRAl ;,Gg, compound$1,14].

Structure | Pearson Space | g | ||, | ce| pr| Nd|Sm| Eu|Gd| Tb| Dy |Ho| Er | Tm| Yb | Lu
type symbol | group
Binary aluminides
CuwAu cP4 Pm3m | rt | ht2 hp-htht | ht| rt| rt| rt
MgsCd hP8 P6s/mmc rt | ort | ort | ort | ort|ort rt
BaPh hR36 R-3m htl hp-ht rt
TiNis hP16 P6s/mmc rt| hp
HoAl; hR60 R-3m ht| ht| rt| rt
Ternary alumosilicides
PuAl; hP24  [P6J/mmc R rt®
BaPh, hR36 R-3m rt
Ternary alumogermanides
PuAl; hP24  [P6J/mmc i
BaPh, hR36 R-3m rt
& Compound Er(AlsSiy ).
b Partly ordered ternary variant y&Al g 9gsSip.01592(Al 9.835ip.17) (Structure type YEoaAl o gSio.2)-
¢ This work.
d Partly ordered ternary variant yY&4Alo.9e£G&.0192(Al 0.885&.17) (Structure type Y§osAl, 6Sip 2).
¢ Partly ordered ternary variant HoAl@kG& 11), (structure type HoAlGe, »).
Table 2 Crystallographic parameters of compounds repaniglde Ho—AI-Si system.
Compound Structure | - Pearson Space a A b, A c, A Reference
type symbol group
HoAl,Si, CaALSi, hP5 P-3m1 4.19 - 6.49 [15]
~HoAI,Si [12]
~HosAl 1,Si hR* 6.117 - 20.979 [12]
HoAl, Sij » BaPh hR36 R-3m 6.12537(7) - 20.9526(3 This work
Ho,AI 3Si; YAl 3Si; mSsl4 C2/m 10.126 4.0266 6.5812 [16]
S =100.93°
HoAISI YAIGe 0812 Cmcm 3.9880 10.229 5.6829 [17]
~H035Al 30Sizs tr* 12.123 - 15.138 [12]
"H037ﬁ| 32.§i30 t** 7.900 - 4.255 [12]
Ho,AISI, W,CoB, ol10 Immm 4.022 5.732 8.578 [18]
Ho,AlLSi Mo,FeB, tP10 P4/mbm 6.910 - 4.237 [19]
HogAl 3Si ThsAl 5Si t180 14/mcm 11.49 - 14.90 [20]

was made to distinguish Al and Si and both siteewe
assumed to be occupied by a statistical mixturélof
and Si atoms. The composition of the statistical
mixture (0.93Al + 0.07Si) was calculated accordiog
the nominal composition of the alloy, and the
chemical formula is conveniently written as
HoAl, ¢Sip». There was no indication for site splitting
or vacancies on thB-atom sites, as reported for the
Ybo.gdAl» eSip >-type compoundgl0,11]

In the final cycle of the refinement, 17 parameter
were allowed to vary: zero shift, scale factor,
two cell parameters, five profile parameters (pseud

Voigt function), one texture parameter, three
positional parameters, and four displacement
parameters.

Experimental details of the structure refinemeht o
the compound HoAlSiy, and crystallographic data
are presented ifable 3 The atom coordinates and

isotropic displacement parameters are listed in

Chem. Met. All

Table 4 and interatomic distances and atom polyhedra
are given in Table5 Observed and calculated
diffraction diagrams are shown liig. L

In the structure of HoALSi, the Ho atoms
occupy two Wyckoff positions, Gand &, of space
group R-3m. The statistical mixture formed by the
smaller atoms (Al and Si) also occupies two Wyckoff
positions, however of lower point symmetry, h18
and &

The crystal structure of the new compound is
close-packed with one-atom thick close-packed k&yer
in h,c stacking along [001] and 9 layers in the
translation periocc (seeFig. 2). The ratio of Ho to
Al/Si atoms in each layer is 1:3, and all the layer
have the same construction: the Al/Si atoms form
kagomé nets 3636 and the Ho atoms center the
hexagons in the net&i@. 3. The layers are stacked in
such a way that the Ho atoms are situated “oved’ an
“under” Al/Si triangles of neighboring nets.
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Table 3 Details of the structure refinement for HeA$ij .

Space group R-3m

Cell parameters, ¢, A 6.12537(7), 20.9526(3)
Cell volumeV, A3 680.82(1)
Number of formula units in the cedl 9

DensityDy, g cm® 5.399

FWHM parameterd), V, W 0.125(4), -0.002(3), 0.0137(5)
Mixing parameter 0.783(4)
Asymmetry parametety, -0.013(2)
Texture parametds [direction] 1.100(1) [001]
Number of reflections 144

Number of refined parameters 17

Reliability factorsRg, Ry, Ryp 0.0402, 0.0434, 0.0588
Goodness of fi§ 0.85

Table 4 Atom coordinates and isotropic displacement patarsefor HoA} gSiy»: structure type BaRb

hR36,R-3m, a = 6.12537(7)¢ = 20.9526(3) A.

Site Wyckoff position X y z B, A2
Hol & 0 0 0.2177() 0.62(1)
Ho2 ) 0 0 0 0.65(1)
M12 1&h 0.4805(1) 0.5195(1) 0.2229(1) 0.59(3)
M22 % v, 0 0 0.51(4)
M1 =M2 = Alp 9sSi o7
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i
= 3000-
S
g
@© 20004
>
2
[ 10004
g |
04
T I T
| R Y S M I
Ty ¢ N

10 20 30 40 50

— .
60 70 80 90 100 110

26, °
Fig. 1 Observed (dots), calculated (line) and differer{bettom) X-ray powder diffraction patterns
(CuKay radiation) for the sample He\l;,Sis (vertical bars indicate peak positions of the coo

HoAI; sSio 2).

As characteristic of close-packed structures,
coordination polyhedra consist of 12 atoms:
cuboctahedra (sites Ho2 am®) and anticuboctahedra

(sites Hol andv1). For the Ho atoms the coordination
polyhedra are built up exclusively from Al/Si atgms
whereas for the atoms of the statistical mixtutes t

composition of the polyhedra is Mg. In the isotypic
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the compound with Ge, HoAkG&, Ge was found to

substitute for Al exclusively on the anticuboctatatd
site (Wyckoff position 1B) [8].

Cell parameters of the isotypic compounds found in
the binary {Y,Gd,Th}-Al and ternary Ho—-Al-{Si,Ge}
systems are listed iffable 6 The largest values are
observed for the binary compound GgAlnd
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Table 5 Interatomic distances and coordination polyhedraHoAl, ¢Sig ».

Atoms 5, A Polyhedron
Hol 3L 2.992(2)
3M2° 2.999(2)
6 M1® 3.072(1)
Ho2 M1 3.042(2)
-6 M2? 3.063(1)
M1 2M1? 2.704(1)
2 M1? 2.827(3)
2 M2 2.856(2)
1 Hol 2.992(2)
1 Ho2 3.042(2)
2 Hol 3.072(1)
2 M1 3.421(1)
M2 WIVIG 2.856(2)
-2 Hol 2.999(2)
-2 Ho2 3.063(1)
4 M2 3.063(1)

M1 =M2 = Alg 9sSio.o7

Table 6 Cell parameters of compounds with Ba®lpe structure in the systems {Y,Gd,Tb}-Al and
Ho-Al-{Si,Ge}.

Compound a A c, A v, A° Reference
YAl 3 6.195 21.137 702.52 [23]
GdAl; 6.231 21.173 711.92 [24]
TbAl; 6.176 21.165 699.14 [25]
HoAI; ¢Sy » 6.12537(7) 20.9526(3) 680.82(1) This work
HoAl, §G&y 2 6.1579 21.062 691.7 [8]
the smallest values for the ternary silicon-cornitajn increases the degree of hexagonality of the close-
titte compound. Within the row of isotypic alumieisl packing. The structure of the room-temperature

the cell parameters decrease with decreasing atomic modification of the binary compound HoA(own
radius of the rare-earth metal from Gd to Y and Tb structure type) is characterized by 40% hexagonalit
(req=1.802 Arry =1.801 A rp, = 1.782 A[26]). The whereas addition of 5 at.% Si leads to the fornmadib
cell parameters of the alumisilicide are smalleanth the title compound where the hexagonality is
those of the alumogermanide because of the smaller increased to 66.7% (structure type BgPbThe
atomic radii of Si with respect to Gey{=1.766 A, structure of the high-pressure modification of HpAI
rei = 1.319 Arge. = 1.369 A[26)). (structure type TiN) has 50% hexagonality. On the
Three modifications are known for the binary contrary, heating to high temperature decreases the

compound HoA] and small additions of Si or Ge  hexagonality of the crystal structure down to 0%
produce ternary compounds with a fourth structitre. (structure type CiAu). A similar trend is also
can be seen froniable 7 that addition of the third observed for the binary gallide Hogdor which five
component (Si/Ge) or application of high pressure, polymorphic modifications are knowj].
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Table 7 Close-packed structure types with hexag@t1-type layergl4,27]

Structure Pearson| Space Stacking notation Hexagonality, %
type symbol group Jagodzinski Zhdanov '
MgsCd hP3 P6s/mmc h Q) 100
Bay3SMo(Srb.adBio.sds” hRL56 | R-3m hehehe | (2)1121(1)1211 76.9
Ba,Sny(Sny.4Bio.s9)3” hP32 | P6/mmc hc (2111 75
Ba(Tly Py g)s hP56 P6s/mmc hchyc 29211 71.4
BaPh’ hR36 R-3m h,c (2)(2) 66.7
Ta(Rhy:Pdh )3 hP40 P6s/mmc h,chc 2|2(2) 60
BasSmny(Sry sBio.e1)s” hP40 | P6/mmc hc, (3112 60
TiNi3 hP16 P6s/mmc hc )| 50
Mgsln® hR48 R-3m hc, 3) 50
HoAl; hR60 R-3m hche 32 40
PuAl hP24 | P6y/mmc he Q) 33.3
ThGa(Gay6:Sn.39% [28] hR72 R3m hec, 51 33.3
Caslng(IngsSry 5)12° [29] hP40 P6s/mmc hg O) 20
CuAu cP4 Pm3m c [ 0

& Partly ordered ternary structure.

bA partly ordered ternary variant is HOAI@AG & 11)2.

° A partly ordered ternary variant is Sas(Sny 3Bio .03

adA partly ordered ternary variant is Y84 Al .9855ip.0192(Al 0.83510.17)-

‘/_’y

J

90 Qe

Fig. 2 Unit cell of the structure of Fig. 3 Close-packed layer in the structure of Hopdliy,
HoAl,¢Sip». The close-packed layers (ABs-1-type according tf27]).
perpendicular to [001] are emphasized.
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Conclusions

Replacement of 5 at.% Al by Si in HoAht 600°C
changes the structure from close-packed witthc
stacking (own, HoAJ, type) to close-packed wit,c
stacking (BaPhtype). A similar structure change has
earlier been reported for substitution by Ge.
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