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The effect of twin microstructure changes on the magnetization behavior and magnetic forces in Ni–Mn–Ga-
based Ferromagnetic Shape Memory Alloys (FMSMA’s) is discussed on the basis of the recently developed 
micromagnetic theory of magnetization processes in this new class of magnetostrictive materials. A 
comparison between theoretical results and experiments on the superelastic behavior of Ni–Mn–Ga in an 
external magnetic field is also made. 
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Introduction 
 
Ni–Mn–Ga-based Ferromagnetic Shape Memory 
Alloys (FMSMA’s) have been actively investigated 
during the past years due to their ability to show 
extremely large magnetic field induced deformation 
effects that are about 30-50 times larger, compared to 
the best known ordinary magnetoelastic 
magnetostrictive materials. The first ideas on 
FMSMA’s were proposed by K. Ullakko in 1996 [1], 
who defined them as a new class of magnetostrictive 
materials where the large field induced strain effect is 
based on a twinning mechanism. Later, this idea was 
confirmed experimentally and large strain effects, 
shown in Fig. 1, were discovered in two different 
nonstoichiometric ferromagnetic martensitic phases of 
Ni–Mn–Ga (first, 6% in 5M(Ni48Mn 30Ga22) [2], and 
then 10% in 7M(Ni49Mn 30Ga21) [3]). The initial idea 
has been developed and improved by other researchers 
[4-9]. Many new interesting magnetomechanical 
effects have also been discovered experimentally  
and understood theoretically in Ni–Mn–Ga-based 
FMSMA’s [10-19]. 
 It has been also found that the strain mechanism in 
FMSMA’s is based on twin boundary motion (indicated 
by white arrows) and the resulting redistribution 
between the two twin related variants A and B of the 
martensitic phase, having their easy magnetization axes 
perpendicular to each other, as shown in Fig. 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Results of field-induced strain 
measurements in 5M and 7M Ni–Mn–Ga 
martensites. 
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Hence, the twinning process is developed in such a 
way that the volume fraction of the variant A, ( )hxA  
(the magnetic domain walls of which are parallel to 
the direction of the magnetic field) increases. At the 
same time, the volume fraction of the variant B, ( )hxB  
(where the magnetic field is perpendicular to the 
domain walls), decreases. As a result, the strain 
component along the applied magnetic field ( )hε  
changes proportionally to the volume fraction of the 
variant A. 
 

( ) ( )hxh A⋅= 0εε , (1) 

 
where ε0 is a crystallographic constant characterizing 
the maximal strain that can be provided by the 
twinning mechanism. It can be measured in 
mechanical testing experiments or estimated from the 
crystal lattice parameters. In both cases it gives 6% for 
the 5M and 10% for the 7M phases of the Ni–Mn–Ga 
alloys. 
 There is also a general agreement that the twinning 
process in FMSMA’s is driven by magnetostrictive 
forces that can be defined on a general thermodynamic 
basis [8-10] as follows: 
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Fig. 2 Multiple twin and internal magnetic 
domain microstructure observed in a 5M  
Ni–Mn–Ga martensite ferromagnetic shape 
memory alloy. 

 Here, gmag(h,xA) is the magnetic free energy of the 
FMSMA system and σmag(h,xA) represents the uniaxial 
magnetostrictive force (also called magnetic stress) 
acting along the applied external field. The 
macroscopic strain effect ε(h) can be found as a 
solution of the following basic strain-stress 
relationships: 
 

( ) ( )εσσ 0=Amag x,h , with Ax0εε = , (3) 
 
where σ0(ε) represents a zero-field stress-strain 
relationship for an ordinary mechanical twinning 
process. The magnetostrictive force plays the role of 
an external mechanical load, generally dependent on 
the magnetic field and the volume fraction of the twin 
variants. 
 The magnetic force as a function of the magnetic 
field and volume fraction can be measured 
experimentally in two different ways: by producing 
direct magnetization measurements for different 
constant volume fractions of twin variants, or by 
performing mechanical testing experiments in 
different constant magnetic fields applied 
perpendicular to the external load direction [11,12]. 
 Understanding the field and the volume fraction 
dependence of the magnetic free energy and the 
magnetostrictive forces is a complex theoretical 
problem. Its solution is strictly dependent on our 
understanding of the details of the magnetization 
processes in FMSMA’s consisting of a multiple twin 
band system containing a large number of magnetic 
domains. 
 The aim of the present paper was to investigate the 
effect of the twin and domain microstructure on the 
magnetic free energy and the magnetostrictive forces 
in the 5M martensitic phase of Ni–Mn–Ga, and 
discuss these results on the basis of experiments and a 
recently developed micromagnetic theory [13]. 
 
 
Experimental 
 
In this section we briefly discuss the results of 
mechanical testing experiments performed on the 5M 
martensitic phase of Ni–Mn–Ga under a constant 
magnetic field, applied perpendicular to the 
compression direction. These experiments are 
interesting, not only from the point of view of a new 
effect of rubber-like (superelastic) behavior 
discovered in the 5M and 7M martensitic phases of 
Ni–Mn–Ga [11], but also because the magnetic 
driving forces and magnetic free energy of FMSMA’s 
can be practically measured from these mechanical 
testing experiments [12]. This fact directly follows 
from the basic stress-strain relationship represented 
below: 
 

( ) ( )εσεσσ 0=− ,hmag , with Bx0εε = , (4) 
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where σ is the external uniaxial compression stress 
and ε denotes the strain component along the load 
direction. Accordingly, the magnetostrictive force can 
be found as the difference between the twinning stress 
measured in a constant magnetic field and the zero 
field twinning stress σ0(ε). 
 The samples of the 5M martensitic phase 
investigated experimentally were first subjected to all 
the necessary preparation procedures, including heat 
treatment, orientation with respect to the 
crystallographic axes, cutting, polishing and 
electropolishing. Then all of them were mechanically 
transformed from the usual multi-variant mixture of 
martensite variants into a standard single-variant state. 
Having a 5M type of martensite crystal structure, it 
has high martensitic transformation and Curie 
temperatures (Ms = 42ºC; TC = 103ºC), high magnetic 
anisotropy and low 1 MPa zero field twinning 
stresses. 
 Mechanical testing experiments were performed 
using a standard Lloyd Instruments machine, 
additionally equipped with an electromagnet. The 
magnetic fields were changed in 0.1 T steps, starting 
from zero and finishing at 1 T. The obtained results 
are shown in Fig. 3. It follows from Fig. 3 that an 
increase of the magnetic field monotonically shifts the 
stress-stress curves up to higher stress values and 
changes their shape. 
 In accordance with Eq. 4, the magnetostrictive 
force was found as the difference between  
the twinning stress measured in a constant  
magnetic field and the zero field twinning stress 
curves σ0(ε) within the strain range 1-5%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Effect of magnetic field on the stress-
strain relationship in 5M Ni–Mn–Ga 
martensite. 

The corresponding values are shown in Fig. 4. It can 
be seen that the magnetic force is strongly dependent 
both on the magnetic field and on the strain (volume 
fraction). Within the strain range 1-~5%, the magnetic 
force shows linear dependence on the volume fraction 
and can be represented as the sum of two 
contributions: 
 

( ) ( ) ( )hxhx,h int
magAmagAmag σσσ 







 −+=
2

10 . (5) 

 
Both these contributions are plotted in Fig. 5. 
 In the next section we will discuss the behavior of 
the magnetostrictive forces on the basis of a recently 
developed micromagnetic theory [13]. 
 
 
Results 
 
The picture presented in Fig. 2 reveals a complex 
multi-scale microstructure in the 5M martensitic  
phase of Ni–Mn–Ga. It shows a two-variant 
martensite microstructure consisting of multiple  
twin bands separated by twin boundaries. There  
is also a fine magnetic domain microstructure  
within each twin band with 180º domain walls parallel 
to the local easy magnetization axes of the twin 
variants, and approximately perpendicular to each 
other. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Volume fraction dependence of the 
magnetostrictive force as found from 
mechanical testing experiments in different 
constant magnetic fields for 5M Ni–Mn–Ga 
martensite. 
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 Following the general micromagnetic theory 
proposed in [13], the magnetic free energy of such a 
system magnetized in an external magnetic field h 
consists of Zeeman and magnetic anisotropy energies 
and a magnetostatic (demagnetizing) energy 
contribution. It can be represented as the sum of two 
terms. The first of them is linear with respect to the 
volume fractions xA and xB and describes a system 
consisting of two non-interacting twin variants: 
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 The second term is proportional to their product 
and therefore represents the magnetostatic interaction 
(coupling) energy between the two different twin 
variants: 
 

( ) ( )( )BABABA mmDSπmmxxg −−−= ˆˆ4
2

1
int . (7) 

 
 The terms in parentheses in Eq. 6 represent the 
local magnetic free energies associated with the A and 
B variants, respectively; mA and mB are their local 
magnetization, averaged over the local magnetic 
domain microstructure. The first term in the 
parentheses is the magnetic anisotropy energy, where 
Ku and Ms are the magnetic anisotropy constant and 
the saturation magnetization value of the MSM 
material; mA┴ and mB┴ are projections of the 
magnetization on the plane perpendicular to the local 
easy magnetization direction of the martensite 
variants. The second and third terms represent the 
Zeeman and magnetostatic energies, respectively, 
where D̂  is the so-called demagnetizing matrix, 
which only depends on the macroscopic shape of the 
ferromagnetic sample. The other matrix introduced in 
Eq. 7, nn⊗=Ŝ , characterizes the demagnetizing 
effect of the flat twin boundaries and n means their 
unit normal direction vector. The magnetic free energy 
represented by Eqs. 6 and 7 should finally be 
minimized to find the local magnetizations, mA(h,xA), 
mB(h,xB), and also the total magnetic free energy 
gmag(h,xA) = g0(h,xA) + gint(h,xA) as a function of the 
external magnetic field and volume fraction. Finally, 
the magnetic driving force σmag(h,xA) can be found 
using Eq. 2. Unfortunately, in the presence of 
magnetostatic coupling between the twin variants, the 
minimizing procedure given by Eq. 7 can only be 
produced numerically. Nevertheless, to see 
analytically the effects produced by the coupling 
energy, we can use the perturbation theory and obtain 
both the total magnetic free energy and the magnetic 
driving forces. First, we neglect the coupling term 
(Eq. 5) and minimize a zero-order perturbation theory 
model (Eq. 6), which is known and widely discussed 

in the literature [8-10]. Within the zero-order 
approach, the local magnetizations are parallel to the 
external field mA(h) = Ms(h/hA), mB(h) = Ms(h/hB) and 
increase linearly to their saturation. Here, the local 
saturation fields are: hA = 4πDMs, hB = hA + 2Ku/Ms, 
where D is the component of the demagnetizing 
matrix along the field direction. The magnetic driving 
force according to Eq. 2 will consist of two parts: a 
zero-order contribution ( )hmag

0σ  obtained from Eq. 6 
and a first-order perturbation term σint(h,xA) obtained 
from Eq. 7: 
 

( ) ( ) ( )( )dhmhmh
h

BAmag ∫ −= −

0

1
0

0 εσ , (8) 
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Here, ( ) 502 .neS h ==  and n  and he  are unit vectors 
parallel to the twin boundary normal and the magnetic 
field direction. 
 
 
Discussion 
 
As follows from Eq. 6, the zero-order magnetic 
driving force is not dependent on the volume fractions 
occupied by the different twin variants. Fig. 5 shows  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Field dependence of the 
magnetostrictive force for different volume 
fractions as found from mechanical testing 
experiments in different constant magnetic 
fields for 5M Ni–Mn–Ga martensite. 
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that the fraction independent contribution of the 
magnetostrictive force measured in the mechanical 
testing experiments is in good agreement with the 
zero-order theoretical calculation made on the basis of 
Eq. 6. For the calculations we used the following 
material parameters: magnetic anisotropy constant 
Ku = 1.82 105 J/m3; saturation magnetization 
Ms = 458 G; demagnetizing factor for a particular 
sample D = 0.58. 
 The second contribution, which strongly depends 
both on the magnetic field and the volume fraction, 
can only be explained on the basis of the general 
micromagnetic theory according to Eq. 9. This term, 
caused by the magnetostatic coupling energy in Eq. 7, 
strongly depends on the volume fractions. It can be 
proven that this contribution initially increases with 
increasing magnetic field and reaches its maximal 
value at h = hA = 4πDMs. Then, it decreases and 
becomes zero at h = hB = hA + 2Ku/Ms when the MSM 
material becomes fully saturated. It is interesting that 
both the micromagnetic theory and the experiment 
predict that the coupling effect may completely 
disappear in two cases. It may happen if the volume 
fractions of the twin variants are equal and if the 
demagnetizing effects of the external surface D and 
the twin interfaces S are equal to each other. We 
expect that future numerical solutions will improve 
the simple results obtained within the framework of 
the perturbation theory and will give us more accurate 
understanding of many interesting magnetomechanical 
effects of FMSMA’s. 
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