Thermodynamics of intrinsic point defects in non-stoichiometric lead telluride

Dmytro FREIK¹, Igor GORITCHOK¹*, Yuriy LYSYUK¹, Myroslava SHEVCHUK¹

¹ Precarpathian National Vasyl Stefanyk University, Shevchenka St. 57, 76018 Ivano-Frankivsk, Ukraine * Corresponding author. Tel.: +380-34-2596082; e-mail: goritchok@rambler.ru

Received July 13, 2011; accepted June 27, 2012; available on-line November 5, 2012

Based on a crystal chemical model for defect subsystems, the equilibrium concentrations of point defects and free charge carriers in PdTe crystals submitted to two-temperature annealing have been calculated as a function of temperature T and tellurium vapor pressure P_{Te} . The technological conditions leading to the formation of materials with n- or p-type conductivity have been determined.

Lead telluride / Two-temperature annealing / Electrical properties / Point defects

Термодинаміка власних точкових дефектів у нестехіометричному плюмбум телуриді

Дмитро ФРЕЇК¹, Ігор ГОРІЧОК¹*, Юрій ЛИСЮК¹, Мирослава ШЕВЧУК¹

¹ Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка 57, 76025 м. Івано-Франківськ, Україна

* Контактна особа. Тел.: +380-34-2596082; e-mail: goritchok@rambler.ru

На основі запропонованої кристалохімічної моделі дефектної підсистеми розраховано рівноважні концентрації точкових дефектів та вільних носіїв заряду в кристалах PbTe при двотемпературному відпалі в залежності від температури T та тиску пари телуру P_{Te} . Встановлено технологічні умови, при яких формується матеріал n- або p-типу провідності.

Плюмбум телурид / Двотемпературний відпал / Електричні властивості / Точкові дефекти

Вступ

Серед вузькощілинних напівпровідників плюмбум телурид і тверді розчини на його основі займають особливе місце. З одного боку, вони мають ряд унікальних фізико-хімічних властивостей, що робить їх незамінним об'єктом для модельних досліджень, а з іншого – широко застосовуються на практиці, зокрема лля виготовлення приймачів і когерентних джерел ІЧ-випромінювання діапазону спектрального 3,0-50,0 мкм та термоелектричних пристроїв, що функціонують інтервалі температур V 500-700 K [1-3].

Плюмбум телурид кристалізується у структурі типу NaCl з параметом гратки a = 6,452 Å [4].

В елементарній комірці міститься 4 октаедричні та 8 тетраедричних порожнин. Ширина забороненої зони PbTe при $T \approx 0$ К становить $E_g \approx 0,19$ eB [1,2] (0,18 [5], 0,187 [6]), збільшується з ростом температури зі швидкістю 4·10⁻⁴ eB/К [2,5-7] і при T = 300 К $E_g = 0,315$ eB [1]. При $T \approx 400$ К збільшення ширини забороненої зони припиняється, і її значення становить $E_g \approx 0.38 \text{ eB}$ [8]. Головні екстремуми електронної та діркової зон у плюмбум телуриді розміщені на краю зони Бріллюена у напрямку (111) (точка L). Аналіз концентраційної та температурної залежностей електричних і оптичних властивостей вказує на існування у РbTe другої валентної зони (зони важких дірок) з відносно великою ефективною масою (точка Σ). Зона важких дірок вважається

параболічною, а зона легких дірок описується моделлю Кейна [9]. Енергетична щілина між краями важких і легких дірок при низьких температурах дорівнює $dE_V \approx 0.17$ eB [8] і з ростом температури зменшується - 3i швидкістю $\sim 4.10^{-4}$ eB/K [6,10-12] ($dE_{\nu}(120 \text{ K}) =$ 0,12-0,13 eB [9], $dE_{\nu}(300 \text{ K}) = 0,05-0,08 \text{ eB}$ [9]), так що енергетичний проміжок між краями зони провідності і зоною важких дірок залишається незмінним. Отже, при T > ~450 К заборонена зона плюмбум телуриду стає непрямою. Зростання ролі зони важких дірок при рості температури призводить до збільшення відносної концентрації важких дірок, внаслідок чого зростає середня ефективна маса дірок [13].

Ефективна маса електронів та легких дірок проявляє залежність як від температури [5], так і від концентрації самих носіїв [14]. Температурна залежність ефективної маси для дірок і електронів може бути описана функцією [5]:

$$m^* = m_0^* \left(\frac{T}{T_0}\right)^{\alpha}.$$
 (1)

Для концентраційної залежності ефективної маси електронів у роботі [14] запропоновано вираз:

$$m^* = m_0^* \left(1 + \frac{2\mu}{E_g} \right).$$
 (2)

РьТе відноситься до сполук із значною областю гомогенності [1]. Відхилення складу від стехіометричного становить ~0,01 ат.% Рb та ~0,02 ат.% Те [4]. Присутність у кристалічній гратці надлишкових атомів одного з компонентів зумовлює виникнення значної кількості електроактивних дефектів, основними з яких вважаються вакансії та міжвузлові атоми металу і халькогену. Менш ймовірним є утворення антиструктурних дефектів. Також встановлено, що вакансії халькогену у плюмбум телуриді є донорами, а вакансії металу – акцепторами [15].

У роботі проведено аналіз дефектної підсистеми кристалів РbTe, відпалених у парі телуру, використовуючи метод термодинамічних потенціалів, що базується на розв'язку системи рівнянь рівноваги у двокомпонентній (Pb та Te) двофазній (кристал-пара) системі.

Рівняння рівноваги у системі "кристал – пара"

Ефективно керувати хімічним складом кристалів, а, отже, типом та концентрацією точкових дефектів, можна в процесі двотемпературного відпалу, схема якого представлена на Рис. 1. Відпал зразків проводиться у вакуумованих ампулах в двозонній печі, де одна зона забезпечує температуру кристала, а друга – температуру компонента (Те). Вимірювання температури обох зон проводиться з використанням двох термопар, розташованих, відповідно, біля зразка і холоднішого кінця ампули, температура якого і визначає тиск пари телуру P_{Te} .

Рис. 1 Схема двотемпературного відпалу (а) і профіль температури (б): 1 – кристал РbTe, 2 – компоненти Te (Pb).

Рівноважні концентрації точкових дефектів (вакансій) у кристалі при двотемпературному відпалі безпосередньо визначали з системи рівнянь, що описують рівновагу в гетерогенній багатокомпонентній системі при заданих тиску P і температурі T [16]:

$$\mu_i^s = \mu_i^g, \tag{3}$$

де $\mu_i^{s(g)}$ – хімічний потенціал *i*-го компоненту (*i* = Pb, Te) у парі *g* чи кристалі *s*.

Цей метод має ряд переваг перед традиційно використовуваним методом квазіхімічних реакцій Крегера [17], оскільки дозволяє коректно враховувати в моделі електронейтральні дефекти та використовувати вироджену статистику [17]. При розрахунку використано модель вакансій аніонної та катіонної підгратки.

Хімічний потенціал пари [18]:

$$\mu^{s} = kT \ln P + \mu_{0}. \tag{4}$$

Для одноатомного газу Pb:

$$\mu_0 = kT(-\ln(kT) + \ln(h^3/(2\pi m kT)^{\frac{1}{2}}));$$
 (5)

для двоатомного газу Te₂:

$$\mu_0 = kT(-\ln(kT) + \ln(h^3 / (2\pi m kT)^{\frac{3}{2}}) +$$
(6)

3

$$+\ln(h^2/8\pi^2 IkT) + \ln(h\nu/kT)).$$

де m – маса атома або молекули, $I = ml^2$ – момент інерції молекули, l – відстань між ядрами молекули, ν – внутрішня частота коливань молекули.

Для визначення хімічних потенціалів дефектів, що дорівнюють хімічному потенціалу компоненту, взятому зі знаком "+" або "–", у кристалі використовували процедуру диференціювання енергії Гіббса *G* по концентрації дефекту. Енергію Гіббса представляли у вигляді:

$$G = G_0 + \sum (E + F_{vib})[D] + nE_C - pE_V - -T(S_n + S_p + S_k),$$
(7)

де G_0 – енергія Гіббса, що не залежить від присутності дефектів, E – енергія утворення дефекту, F_{vib} – енергія вільного коливання дефекту, [D] – концентрації дефекту D, n та p – концентрації електронів та дірок, E_C , E_V – енергії дна зони провідності та стелі валентної зони, S_k – конфігураційна ентропія, S_n , S_p – ентропії електронів у зоні провідності та дірок у валентній зоні. Сумування ведеться по всіх підґратках і всіх дефектах у підґратці.

Енергії однократно та двократно іонізованих дефектів визначаються за формулами:

$$E_1 = E_0 - \frac{Z}{|Z|}\varepsilon_1, \quad E_2 = E_0 - \frac{Z}{|Z|}(\varepsilon_1 + \varepsilon_2), \tag{8}$$

де E_0 – енергія утворення нейтрального дефекту, Z – зарядовий стан дефекту, ε_1 , ε_2 – перший та другий рівні іонізації утвореного дефекту.

Зміна енергії вільного коливання для кристалу при утворенні дефекту:

$$F_{vib} = \pm \left\{ 3kT \ln \left(\frac{T_{\theta}}{T} \right) - kT \right\} + x \cdot 3kT \ln \left(\frac{\omega}{\omega_0} \right).$$
(9)

Тут x – кількість атомів що змінили частоту своїх коливань з ω_0 на ω .

Ентропію визначали за законом Больцмана:

$$S_k = k \ln(\prod W_j) = \sum k \ln(W_j) = \sum S_j, \qquad (10)$$

де *W_j* – термодинамічна ймовірність *j*-ї підґратки. Для підґратки з кількома різними видами дефектів:

$$W_j = \frac{N_j!}{\left(N_j - \sum [D]\right)! \prod [D]!},\tag{11}$$

де N_J – концентрація вузлів, у яких може утворитися дефект.

При температурах відпалу ($T \ge 800$ K) зона важких дірок знаходиться вище зони легких дірок, тому вважатимемо, що основний внесок у концентрацію дірок роблять важкі дірки. Для електронів та важких дірок термодинамічні ймовірності дорівнюють:

$$W_n = \frac{N_C!}{(N_C - n)!n!}, \qquad W_p = \frac{N_V!}{(N_V - p)!p!}, \tag{12}$$

де N_C , N_V – густина станів у зоні провідності та валентній зоні, відповідно.

Концентрації електронів та важких дірок можуть бути розраховані за формулами:

$$n = \left(\frac{2\pi m_e^* kT}{h^2}\right)^{\frac{3}{2}} a e^{b\frac{\mu}{kT}},$$

$$p = \left(\frac{2\pi m_h^* kT}{h^2}\right)^{\frac{3}{2}} a e^{-b\frac{\mu + E_g}{kT}},$$
(13)

де коефіцієнти a та b – поправки, що враховують ступінь виродження носіїв і вираховуються чисельно при апроксимації інтеграла Фермі, E_g – ширина забороненої зони.

Враховуючи, що ефективна маса електронів залежить від їх концентрації за законом $m = m_{e,0}^*(0) \cdot (1 + 2\mu/E_g)$ з роботи [14], матимемо:

$$n = \left(\frac{2\pi m_{e,0}^* kT}{h^2}\right)^{\frac{3}{2}} a e^{b\frac{\mu}{kT}} \left(1 + \frac{2\mu}{E_g}\right)^{\frac{3}{2}}.$$
 (14)

Хімічний потенціал електронів μ визначали з рівняння електронейтральності, яке для високих температур може бути записане у вигляді:

$$\sum Z[D] = \left(\frac{2\pi m_{e,0}^* kT}{h^2}\right)^{\frac{3}{2}} a e^{b\frac{\mu}{kT}} \left(1 + \frac{2\mu}{E_g}\right)^{\frac{3}{2}} - \left(\frac{2\pi m_h^* kT}{h^2}\right)^{\frac{3}{2}} a e^{-b\frac{E_g + \mu}{kT}}.$$
(15)

Сумування проводиться по всіх іонізованих дефектах.

У такому вигляді рівняння (15) не може бути розв'язане аналітично, тому для спрощення цієї задачі експериментальні дані [14] були апроксимовані функцією:

$$\frac{m^*}{m^*_{e,0}} = \alpha n^\beta = 0,111 \cdot 10^{-6} \cdot n^{\frac{1}{3}}.$$
 (16)

Враховуючи (16):

$$n = a \cdot \left(\frac{2\pi m_{e,0}^* kT}{h^2}\right)^{\frac{3}{2}} \cdot \left(\alpha n^{\frac{1}{3}}\right)^{\frac{3}{2}} \cdot e^{b\frac{\mu}{kT}} =$$

$$\left(2\pi m_{e,k}^* T\right)^{\frac{3}{2}} = \frac{3}{2} \cdot \frac{1}{2} \cdot e^{b\frac{\mu}{kT}} =$$
(17)

$$= a \cdot \left(\frac{2\pi m_{e,0}\kappa T}{h^2}\right)^2 \cdot \alpha^2 \cdot n^2 \cdot e^{b\kappa T},$$

abo $n = N_C \cdot a e^{b\frac{\mu}{kT}}.$ (18)

Тут

$$N_{C} = a \cdot N_{C,0}^{2} \cdot \alpha^{3} \cdot e^{b\frac{\mu}{kT}},$$

$$N_{C,0} = \left(\frac{2\pi m_{e,0}^{*} kT}{h^{2}}\right)^{\frac{3}{2}}.$$
(19)

Тоді рівняння електронейтральності матиме вигляд:

$$\sum_{3 \text{Відки}} ZD = \alpha^3 a^2 N_{C,0}^2 e^{2b\frac{\mu}{kT}} - a \cdot N_V e^{-b\frac{E_g + \mu}{kT}}.$$
 (20)

$$\mu = \frac{1}{b} \cdot kT \cdot \ln \left(\frac{1}{6} \left\{ 108B + 12\sqrt{-12A^3 + 81B^2} \right\}^{\frac{1}{3}} + \frac{1}{2A} \left\{ 108B + 12\sqrt{-12A^3 + 81B^2} \right\}^{\frac{1}{3}} \right), \quad (21)$$

$$A = \frac{\sum ZD}{\alpha^3 a^2 N_{C,0}^2},$$

$$B = \frac{aN_V e^{-b\frac{E_g}{kT}}}{\alpha^3 a^2 N_{C,0}^2}.$$
(22)

Тоді хімічний потенціал дефекту:

$$\mu_{D_{i}}^{s} = E_{i} + F_{vib,i} - kT \ln \left(\frac{N_{J} - \sum[D]}{[D]} \right) + \\ + \left[2n \left(\frac{E_{C} - kT \left(\ln \frac{N_{C} - n}{n} - \frac{N_{C}}{2n} \ln \frac{N_{C} - n}{N_{C}} \right) + \right) + p \left(E_{V} + kT \left(\ln \frac{N_{V} - p}{p} \right) \right) \right] \times \\ \times \frac{b}{kT} \frac{d\mu}{dD}$$

$$(23)$$

Отже. рівноважної для розрахунку концентрації точкових дефектів при двотемпературному відпалі розв'язується система рівнянь типу (3), в якій хімічні потенціали визначаються з рівнянь (4) та (23). Кожне таке рівняння записується для всіх точкових дефектів, що присутні у кристалі. Систему рівнянь розв'язували шляхом мінімізації квадратичної функції від нев'язок за допомогою математичного пакету MAPLE.

Енергії утворення та іонізації точкових дефектів

Енергії іонізації дефектів приймались рівними значенням, отриманим у роботі [19]. Зокрема, встановлено, що положення рівнів заселеності вакансій визначаються міжелектронною взаємодією. Остання враховувалась у рамках обмеженого наближення Хартрі-Фока. Виявилось, міжелектронна взаємодія шо сильно трансформує раніше запропоновану модель Паради і Пратта [15]. Так, наприклад, V_{Pb} у PbTe призводить до виникнення енергетичного рівня у забороненій зоні, який відсутній в одноелектронній теорії. Незначною варіацією параметрів моделі можна досягнути точного співпадання рівня заселеності вакансії плюмбуму з відомим експериментальним значенням на 75 меВ нижче зони провідності плюмбум телуриду [18]. Експеримент також вказує на акцепторний характер цього рівня [19].

Основний результат розрахунку, проведеного у роботі [19] без змінних параметрів, полягає в тому, що він передбачає існування рівнів перезарядки вакансій в A^4B^6 поблизу країв дозволених зон. Визначений у роботі [19] рівень $E_C - 0,075$ еВ відповідає переходу V_{Pb} з однократного в двократний акцепторний стан, а

рівень $E_C + \sim 0.2 \text{ eB}$ – переходу V_{те} з однократного в двократний донорний стан. Рівні нейтральних станів вакансії металу $E_V - \sim 0.8 \text{ eB}$ і вакансії халькогену $E_C + \sim 0.7 \text{ eB}$ лежать далеко від країв забороненої зони.

Варто зазначити, що у роботі [7] методом низькотемпературної калориметричної спектроскопії в полікристалічних зразках n-PbTe з незначним (~0,1 ат.%) надлишком плюмбуму виявлена δ-подібна особливість у густині станів зони провідності, інтерпретована як вузька (~0,01 eB) смуга резонансних станів, пов'язаних з вакансійними дефектами у аніонній підгратці. Оцінка енергетичного положення вакансійного рівня над краєм зони провідності на основі даних про залежність $\varepsilon_F(n)$ для PbTe при T = 77 K дає величину $E_{V}(\text{Te}) = 165 \pm 15 \text{ meB},$ що лобре узгоджується з результатами розрахунку [19].

При розрахунку концентрацій точкових дефектів, вважали, що з ростом температури енергія іонізації дефекту зростає пропорційно збільшенню відстані між зоною провідності та зоною легких дірок.

Енергії утворення точкових дефектів були прийняті рівними значенням, отриманим у роботі [20] $(E(V_{Pb}) = 2,48 \text{ eB}, E(V_{Te}) = 1,94 \text{ eB}),$ які водночас є близькими до значень, отриманих у роботі [21] $(E(V_{Pb}) = 2,187 \text{ eB}, E(V_{Te}) = 2,135 \text{ eB}).$ Проте, такий вибір не дозволив кількісно правильно пояснити експериментальні дані. Тому значення енергій утворення вважали варіаційним параметром. Також варіаційними параметрами вважали зміни частот коливань атомів в околі дефектів, оптимальні значення яких приведені в Таблиці 1.

Таблиця 1 Енергетичні параметри точкових дефектів у кристалах РbTe.

	V _{Pb}	V _{Te}
E_0 , eB	4,18	3,19
ε ₁ , eB [18]	E_{C} 0,075	E_{C} +0,165
ε ₂ , eB [18]	E_{V} -0,8	E_{C} +0,7
x	6	6
ω/ω_0	2,90	4,00

Обговорення результатів дослідження

Розраховані концентрації точкових дефектів в залежності від температури відпалу T та парціального тиску пари телуру P_{Te} представлені на Рис. 2-4. Параметри, що при цьому використовувались наведено в Таблиці 2. Як видно (Рис. 2,4), теоретично визначені концентрації вільних носіїв задовільно описують експериментальні дані. Для порівняння, на Рис. 3 приведено залежності концентрацій дефектів, вільних електронів і дірок від тиску пари телуру, отримані з використанням моделі у якій не

Параметр Значення Література $0,625102 \cdot 10^{13} \, \overline{c^{-1}}$ Внутрішня частота коливань молекули Те2 [22] 2,59·10⁻¹⁰ м Відстань між ядрами у молекулі Те2 [22] Константа $K = P_{\text{Te}_2}^{1/2} P_{\text{Pb}}$ $K = 10^{(-17720/T+9,54)} \cdot (101325)^{3/2} \ \Pi a^{3/2}$ [23] $0,18+4\cdot 10^{-4} \cdot T$ $E_g \ (0 < T < 300), \ eB$ [5] $E_g (T > 400), eB$ 0.38 [11] $0,142 \cdot m_0 \cdot (T/120)^{0,4}$ Ефективна маса електронів [5] $0,142 \cdot m_0 \cdot (T/120)^{0,4}$ Ефективна маса легких дірок [5] Ефективна маса важких дірок $1,10 \cdot m_0$ [10] Температура Дебая $T_{\theta} = 125 \text{ K}$ [4]

ך ²⁰

Рис. 2 Залежність концентрації електронів *n*, дірок *p*, холлівської концентрації *N_x* і точкових дефектів [D] $(1 - V_{Pb}^{-1}, 2 - V_{Pb}^{-2})$ $3 - V_{Te}^{+2}$) для PbTe від тиску пари телуру P_{Te} при двотемпературному відпалі за температур *T*, K: 873 (a), 918 (б), 973 (в). Криві – розрахунок, ▲ – експеримент [5].

враховано концентраційну залежність ефективної маси електронів $m_{e}^{*}(n)$. Видно, що в цьому випадку концентрації донорних дефектів та вільних електронів є меншими, аніж у випадку використання моделі, в якій ця залежність врахована.

(B)

Згідно з проведеним розрахунком, в матеріалі насиченому плюмбумом домінуючими дефектами є двократно іонізовані вакансії телуру (V_{Te}²⁺), а насиченому телуром – однократно і двократно

іонізовані вакансії плюмбуму (V-pb, V2-). При сталій температурі відпалу із зростанням тиску пари телуру концентрація двократно заряджених вакансій плюмбуму V_{Pb}^{2-} збільшується швидше ніж однократно заряджених вакансій V-рь, таким чином, що в околі п-р-переходу домінуючими є V²⁻ а при максимальному тиску пари телуру – нейтральних V_{Pb}. Концентрації вакансій плюмбуму V_{Pb}^0 та телуру V_{Te}^0 і однократно іонізованих вакансій телуру V_{Te}^{1+} є набагато

3

lg(n ,p ,[D], cm ⁻³) - 12 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	n 2 1	Ŕ	N _x	P		
16 -						
15 -						
-3	3 -2	-1	0	1	2	3
		lg(H	Р _{<i>Te</i>} , Па	.)		
		(6	5)			

T=918K

Таблиця 2 Основні параметри кристалів РbTе.

меншими, тому ці залежності не приведені на Рис. 2-4. Варто зазначити, що за умови справедливості прийнятої моделі розташування енергетичних рівнів вакансій, для того щоб концентрації нейтральних дефектів були співвимірними з концентраціями іонізованих, необхідно щоб рівень Фермі знаходився глибоко у дозволених зонах: $E_V - ~0,8 \text{ eB} - для$ вакансії плюмбуму, $E_C + ~0,7 \text{ eB} - для вакансії телуру.$

Оскільки досягнути такого виродження практично неможливо, то при розрахунку дефектної підсистеми можна використовувати моделі, що не враховують нейтральних дефектів.

Рис. 3 Залежність концентрації електронів *n*, дірок *p*, холлівської концентрації N_x і точкових дефектів [*D*] (1 – V_{Pb}^{-1} , 2 – V_{Pb}^{-2} , 3 – V_{Te}^{+2}) для РbTe від тиску пари телуру P_{Te} при двотемпературному відпалі за температури T = 973 K, отримана з використанням моделі в якій не враховано залежність $m_e^*(n)$. Криві – розрахунок, \blacktriangle – експеримент [5].

Рис. 4 Залежність концентрації електронів *n*, дірок *p*, холлівської концентрації N_x і точкових дефектів [*D*] (1 – V_{Pb}^{-1} , 2 – V_{Pb}^{-2} , 3 – V_{Te}^{+2}) для РbTe від температури відпалу *T* за тиску пари телуру $P_{Te} = 10^4$ Па. Криві – розрахунок, **—** – експеримент [5].

Отримані при моделюванні більші значення енергій утворення дефектів, у порівнянні з літературними даними, можуть бути пояснені особливостями електронної підсистеми кристалів плюмбум телуриду, що не завжди вдається врахувати при розрахунках. Так, зокрема, прості моделі на зразок [20], що використовувались при обчисленні енергій утворення вакансій, не враховують спін-орбітальної взаємодії, яка є суттєвою у кристалах РbTe [24]. Також при розрахунках не враховано деформацій гратки в околі дефектів, зумовлених ефектом Яна-Тейлора [1,19], що також може суттєво (на кілька десятих електрон-вольт) змінити енергію утворення іонізованих дефектів. Проте, запропонована модель досить точно описує дані холлівських вимірювань, що може бути підтвердженням її адекватності.

Висновки

1. Запропоновано кристалохімічну модель дефектної підсистеми плюмбум телуриду, яка враховує вакансії у аніонній (V_{Te}^0 , V_{Te}^+ , V_{Te}^{2+}) та катіонній (V_{Pb}^0 , V_{Pb}^- , V_{Pb}^{2-}) підгратках, кожна з яких може знаходитись у трьох зарядових станах: нейтральному, однократно або двократно зарядженому, відповідно.

2. Встановлено, що в матеріалі насиченому плюмбумом домінуючими дефектами є двократно іонізовані вакансії телуру (V_{Te}^{2+}), а насиченому телуром – однократно і двократно іонізовані вакансії плюмбуму (V_{Pb}^{-} , V_{Pb}^{2-}).

3. Для якісно правильного пояснення експериментальних залежностей холлівської концентрації необхідним є врахування у моделі температурної і концентраційної залежностей ефективних мас електронів та легких дірок.

4. Теоретично розраховані концентрації вільних носіїв струму у кристалах PbTe задовільно узгоджуються з даними холлівських вимірювань у широкому інтервалі технологічних параметрів, що свідчить про адекватність запропонованої моделі точкових дефектів.

Робота виконана згідно з науковими проектами МОН України (державні реєстраційні номери: 0111U001766, 0110U000144) та Державного агентства з питань науки, інновацій та інформатизації України (державний реєстраційний номер: 0110U007674).

Література

- [1] Д.М. Заячук, Физ. тех. полупроводн. 31(2) (1997) 1692-1713.
- [2] В.И. Кайданов, Ю.И. Равич, Усп. физ. наук 145(1) (1985) 51-86.
- [3] В.М. Шперун, Д.М. Фреїк, Р.І. Запухляк, Термоелектрика плюмбум телуриду та його аналогів, Плай, Івано-Франківськ, 2000, 250 с.
- [4] Д.М. Фреїк, В.В. Прокопів, М.О. Галущак, М.В. Пиц, Г.Д. Матеїк, Кристалохімія і термодинаміка дефектів у сполуках А^{IV}B^{VI}, Плай, Івано-Франківськ, 1999, 164 с.
- [5] Д.Б. Чеснокова, М.И. Камчатка, *Неорг. матер.* 37(2) (2001) 157-164.
- [6] С.А. Немов, Ю.И. Равич, *Усп. Физ. Наук* 168(8) (1998) 817-842.
- [7] И.А. Черник, А.В. Березин, С.Н. Лыков, Е.П. Сабо, Ю.Д. Титаренко, *Письма ж. эксп. теор. физ.* 48(10) (1988) 550-553.
- [8] Y. Matsushita, *Thesis*, Stanford University, 2007.
- [9] И.К. Смирнов, Ю.И. Уханов, Физ. тех. полупроводн. 3(12) (1969) 1833-1836.
- [10] М.И. Виноградова, В.И. Тамарченко, Л.В. Прокофьева, Физ. тех. полупроводн. 9(3) (1975) 483-487.
- [11] Б.Ф. Грузинов, И.А. Драбкин, Г.Ф. Захарюгина, А.В. Матвеенко, И.В. Нельсон, *Физ. тех. полупроводн.* 13(2) (1979) 330-334.

- [12] Л.В. Прокофьева, Д.А. Пшенай-Северин, П.П. Константинов, А.А. Шабалдин, Физ. *тех. полупроводн.* 43(9) (2009) 1195-1198.
- [13] Г.А. Ахмедова, Г.З. Багиева, Н.Б. Мустафаев, З.Ф. Агаев, *Fizika* XIII(1-2) (2007) 157-159.
- [14] И.Н. Дубровская, Ю.И. Равич, Физ. тверд. тела 8(5) (1966) 1455-1460.
- [15] N.J. Parada, G.W. Pratt, Phys. Rev. Lett. 22(5) (1969) 180-182.
- [16] В.К. Семенченко, Избранные главы теоретической физики, Просвещение, Москва, 1966, 396 с.
- [17] В.И. Кайданов, С.А. Немов, Ю.И. Равич, Физ. тех. полупроводн. 28(3) (1994) 369-393.
- [18] Ю.Б. Румер, М.Ш. Рывкин, *Термодинамика, статистическая физики и кинетика*, Наука, Москва, 1972, 400 с.
- [19] О.А. Панкратов, П.П. Поваров, Физ. тверд. тела 30(3) (1988) 880-882.
- [20] В.В. Прокопів, І.В. Горічок Л.Д. Юрчишин, Фіз. хім. тв. тіла 11(4) (2010) 849-852.
- [21] H. Khang, S.D. Mahanti, J. Puru, *Phys. Rev. B* 76 (2007) 115432–1-18.
- [22] Ф. Крегер, *Химия несовершенных кристаллов*, Мир, Москва, 1972, 640 с.
- [23] В.П. Зломанов, А.В. Новоселова, *P-T-хдиаграммы состояния системы металлхалькоген*, Наука, Москва, 1987, 208 с.
- [24] Б.А. Волков, О.А. Панкратов, А.В. Сазонов, Физ. тех. полупроводн. 16(10) (1982) 1734-1742.