On feebly compact shift-continuous topologies on the semilattice expnλ

Oleg Gutik, Oleksandra Sobol

Анотація


We study feebly compact topologies τ on the semilattice expnλ, such that expnλ,τ is a semitopological semilattice and prove that for any shift-continuous T1-topology τ on expnλ the following conditions are equivalent: (i) τ is countably pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly compact; (iv) expnλ,τ is an H-closed space.

Повний текст:

PDF (English)

Посилання


Arhangel'skii A.V. On spaces with point-countable base //

Topological spaces and their mappings. Riga, 1985. - P. 3-7 (in Russian).

Arkhangel'skii A.V. Topological function spaces. - Dordrecht: Kluwer Acad. Publ., 1992. - ix+205 p.

Bagley R.W., Connell E.H., McKnight J.D., Jr. On properties characterizing pseudo-compact spaces // Proc. Amer. Math. Soc. - 1958. - textbf{9}, №3. - P. 500-506.

Banakh T., Dimitrova S., Gutik O. Embedding the bicyclic semigroup into countably compact topological semigroups // Topology Appl. - 2010. - 157, N18. - P. 2803-2814.

Bardyla S., Gutik O. On a semitopological polycyclic monoid // Algebra Discr. Math. - 2016. - 21, N2. - P. 163-183.

Carruth J.H., Hildebrant J.A., Koch R.J. The theory of topological semigroups. - New York–Basel: Marcell Dekker Inc., 1983. - Vol. 1. - 244 p.; 1986. - Vol. 2. - 195 p.

Clifford A.H., Preston G.B. The algebraic theory of semigroups. - Providence: Amer. Math. Soc., 1961. - Vol. 1. - xv+224 p.; 1967. - Vol. 2. - xv+350 p.

Engelking R. General topology. - Berlin: Heldermann, 1989. - 539 p.

Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S. Continuous lattices and domains. - Cambridge: Cambridge Univ. Press, 2003.

Gutik O.V., Ravsky O.V. Pseudocompactness, products and topological Brandt $lambda^0$-extensions of semitopological monoids // Math. Methods and Phys.-Mech. Fields. - 2015. - 58, N2. - P. 20-37; reprinted version: J. Math. Sci. - 2017. - 223, N2. - P.18-38.

Gutik O., Sobol O. On feebly compact topologies on the semilattice $exp_nlambda$ // Mat. Stud. - 2016. - 46, N1. - P. 29-43.

Matveev M. A survey of star covering properties. - Topology Atlas Preprint, April 15, 1998. - 138 p.

Ruppert W. Compact semitopological semigroups: An intrinsic theory // Lect. Notes Math. - Berlin: Springer, 1984. - 1079. - 259 p.

Urysohn P. Zum Metrisationsproblem // Math. Ann. - 1925. - 94. - S. 309-315.


Посилання

  • Поки немає зовнішніх посилань.