On semitopological interassociates of the bicyclic monoid

Oleg Gutik, Kateryna Maksymyk

Анотація


Semitopological interassociates Cm,n of the bicyclic semigroup C(p,q) are studied. In particular, we show that for arbitrary non-negative integers m, n and every Hausdorff topology τ on Cm,n such that Cm,n,τ is a semitopological semigroup, is discrete. Also, we prove that if an interassociate of the bicyclic monoid Cm,n is a dense subsemigroup of a Hausdorff semitopological semigroup S,· and I=S\Cm,n then I is a two-sided ideal of the semigroup S and show that for arbitrary non-negative integers m, n, any Hausdorff locally compact semitopological semigroup Cm,n0=Cm,n{0} is either discrete or compact.

Повний текст:

PDF (English)

Посилання


Andersen O. Ein Bericht uber die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.

Anderson L.W., Hunter R.P, Koch R.J. Some results on stability in semigroups //Trans. Amer. Math. Soc. - 1965. - 117.- P. 521-529.

Arkhangel'skii A.V. Bicompact sets and the topology of spaces //Dokl. Akad. Nauk SSSR. - 1963. - 150, no. 1. - P. 9-12 (in Russian); English version in: Soviet Math. Dokl. - 1963. - 4. - P. 561?564.

Arkhangel'skii A.V. Topological function spaces. Dordrecht: Kluwer Acad. Publ., 1992. - ix+205 p.

Banakh T., Dimitrova S., Gutik O. The Rees-Suschkiewitsch Theorem for simple topological semigroups //Mat. Stud. - 2009. - 31, N2. - P. 211-218.

Banakh T., Dimitrova S., Gutik O. Embedding the bicyclic semigroup into countably compact topological semigroups //Topology Appl. - 2010. - 157, N18. - P. 2803-2814.

Bertman M.O., West T.T. Conditionally compact bicyclic semitopological semigroups //Proc. Roy. Irish Acad. - 1976. - A76, N21-23. - P. 219-226.

Boyd S.J., Gould M., Nelson A. Interassociativity of semigroups //Proceedings of the Tennessee topology conference, Misra, P. R. (ed.) et al., Nashville, TN, USA, June 10-11, 1996. - Singapore: World Scienti?c, 1997, P. 33-51.

Carruth J. H., Hildebrant J. A., Koch R. J. The theory of topological semigroups. - New York-Basel: Marcell Dekker Inc., 1983. - Vol. 1. - 244 p.; 1986. - Vol. 2. - 195 p.

Clifford A. H., Preston G. B. The algebraic theory of semigroups. - Providence: Amer. Math. Soc., 1961. - Vol. 1. - xv+224 p.; 1967. - Vol. 2. - xv+350 p.

Colmez J. Sur les espaces pr? ecompacts //C. R. Acad. Paris. - 1951. - 233. - P. 1552-1553.

T'ong Din' N'e. Preclosed mappings and A. D. Taimanov's theorem //Dokl. Akad. Nauk SSSR . - 1963. - 152. - P. 525-528 (in Russian); English version in: Soviet Math. Dokl. - 1963. - 4. - P. 1335-1338.

Eberhart C., Selden J. On the closure of the bicyclic semigroup //Trans. Amer. Math. Soc. - 1969. - 144. - P. 115-126.

Engelking R. General topology. - Berlin: Heldermann, 1989. - 539 p.

Fihel I.R., Gutik O.V. On the closure of the extended bicyclic semigroup //Carpathian Math. Publ. - 2011. - 3, N2. - P. 131-157.

Givens B.N., Rosin A., Linton K. Interassociates of the bicyclic semigroup //Semigroup Forum. - 2017. - 94, N1. - P. 104-122.

Gutik O.V. Any topological semigroup topologically isomorphically embeds into a simple path-connected topological semigroup //Algebra and Topology, Lviv: Lviv Univ. Press, 1996, P. 65-73, (in Ukrainian).

Gutik O. On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero //Visn. L'viv. Univ., Ser. Mekh.-Mat. - 2015. - 80. - P. 33-41.

Gutik O., Repovs s D. On countably compact 0-simple topological inverse semigroups//Semigroup Forum. - 2007. - 75, N2. - P. 464-469.

Hickey J. B. Semigroups under a sandwich operation //Proc. Edinb. Math. Soc., II. Ser. - 1983. - 26, N3. - P. 371-382.

Hildebrant J.A., Koch R.J. Swelling actions of Γ-compact semigroups //Semigroup Forum. - 1986. - 33, N1. - P. 65-85.

Koch R.J., Wallace A.D. Stability in semigroups //Duke Math. J. - 1957. - 24, -2. - P. 193-195.

Lawson M. Inverse semigroups. The theory of partial symmetries. - Singapore: World Scientific, 1998. - 411 p.

McDougle P. A theorem on quasi-compact mappings //Proc. Amer. Math. Soc. - 1958. - 9, N3. - P. 474-477.

McDougle P. Mapping and space relations //Proc. Amer. Math. Soc. - 1959. - 10, N2. - P. 320-323.

Moore R.L. Concerning upper semi-continuous collections of continua //Trans. Amer. Math. Soc. - 1925. - 27, N4. - P. 416-428.

Ruppert W. Compact semitopological semigroups: An intrinsic theory //Lect. Notes Math. - Berlin: Springer, 1984. - 1079. - 259 p.

Vainstein I. A. On closed mappings of metrc spaces // Dokl. Akad. Nauk SSSR. - 1947. - 57. - P. 319-321 (in Russian).


Посилання

  • Поки немає зовнішніх посилань.