Optimal control in problems without initial conditions for weakly nonlinear evolution variational inequalities

Mykola Bokalo, Andrii Tsebenko

Анотація


An optimal control problem for systems described by Fourier problem (problem without initial conditions) for weakly nonlinear evolution variational inequalities is studied. A control function occurs in the coefficients of the variational inequality which describes the state of control system. Different types of observation are considered. The existence of the optimal control is proved.

Повний текст:

PDF (English)

Посилання


Adams D.R. Optimal control of the obstacle for a parabolic variational inequality / David

R. Adams, Suzanne Lenhart // Journal of Mathematical Analysis and Applications - 2002.

- Vol. 268, P. 602-614.

Aubin J.-P. Un theoreme de compacite / J.-P. Aubin // Comptes rendus hebdomadaires

des seances de l'academie des sciences - 2007. - Vol. 256, No. 24, P. 5042-5044.

Barbu V. Optimal Control of Variational Inequalities / V. Barbu - London: Pitman, 1983.

Bernis F. Existence results for doubly nonlinear higher order parabolic equations on

unbounded domains / F. Bernis // Math. Ann. - 1988. - Vol. 279 P. 373-394.

Bokalo M. Well-posedness of problems without initial conditions for nonlinear parabolic

variational inequalities / M. Bokalo // Nonlinear boundary problem - 1998. - Vol. 8, P.

-63.

Bokalo M. Linear evolution first-order problems without initial conditions / M. Bokalo, A.

Lorenzi // Milan Journal of Mathematics - 2009. - Vol. 77, P. 437-494.

Bokalo M. Existence of optimal control in the coefficients for problem without initial condi-

tion for strongly nonlinear parabolic equations / M. Bokalo, A. Tsebenko // Matematchni

Studii - 2016. - Vol. 45, No. 1, P. 40-56.

Bokalo M.M. Optimal control of evolution systems without initial conditions / M.M. Bokalo

// Visnyk of the Lviv University. Series Mechanics and Mathematics - 2010. - Vol. 73, P.

-113.

Bokalo M.M. Problem without initial conditions for classes of nonlinear parabolic

equations / M.M. Bokalo // J. Sov. Math. - 1990. - Vol. 51, No. 3, P. 2291-2322,

doi:10.1007/BF01094990.

Boukrouche M. Existence, uniqueness, and convergence of optimal control problems associ-

ated with parabolic variational inequalities of the second kind / M. Boukrouche, D. A.

Tarzia // arXiv:1309.4869v1 [math.AP] 19 Sep 2013

Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations / H. Brezis

- Springer New York Dordrecht Heidelberg London, 2011.

Brezis H. Operateurs maximaux monotones et semi-groupes de contractions dans les espaces

de Hilbert H. Brezis - Amsterdam, London: North-Holland Publishing Comp., 1973.

Buhrii O.M. Some parabolic variational inequalities without initial conditions / O. Buhrii

// Visnyk of the Lviv University. Series Mechanics and Mathematics. - 1998. - Vol. 49, P.

-121.

Gayevskyy H. Nonlinear operator equations and operator differential equations / H.

Gayevskyy, K. Greger, K. Zaharias - M.: Mir, 1978.

Ivasishen S.D. Parabolic boundary problems without initial conditions / S.D. Ivasishen //

Ukr. Mat. Zh. - 1982. - Vol. 34, No. 5, P. 547-552.

Kazufumi I., Kunisch K. Optimal control of parabolic variational inequalities / I. Kazufumi,

K. Kunisch // J. Math. Pures Appl. - 2010. - Vol. 93, P. 329-360.

O. Kogut On Optimal Control Problem in Coefficients for Nonlinear Elliptic Variational

Inequalities / Kogut O. // Visnik Dnipropetrovskogo Universitetu. Seria Modeluvanna -

- Vol. 19, No. 8, P. 86-98, DOI 10.15421/141107.

Lavrenyuk S., Ptashnyk M. Problem without initial conditions for a nonlinear pseudoparabolic

system / S. Lavrenyuk, M. Ptashnyk // Differential Equations - 2000. - Vol. 36, No. 5, P.

-748.

Lions J.-L. Quelques methodes de resolution des problemes aux limites non lineaires / J.-L.

Lions - Paris (France): Dunod Gauthier-Villars, 1969.

Oleinik O., Iosifjan G. Analog of Saint-Venant's principle and uniqueness of solutions of the

boundary problems in unbounded domain for parabolic equations / O. Oleinik, G. Iosifjan

// Usp. Mat. Nauk. - 1976. - Vol. 31, No. 6, P. 142-166.

Pankov A. Bounded and almost periodic solutions of nonlinear operator differential equati-

ons / A. Pankov - Kluwer, Dordrecht, 1990.

Pukach P.Ya. On problem without initial conditions for some nonlinear degenarated

parabolic system / P.Ya. Pukach // Ukrainian Math. J. - 1994. - Vol. 46, No. 4, P.

-487.

Rockafellar R. On the maximal monotonicity of subdifferential mappings / R. Rockafellar

// Pacific J. Math. Vol. - 1970. - Vol. 33 No. 1, P. 209-216.

Showalter R. Monotone operators in Banach space and nonlinear partial differential equati-

ons / R. Showalter // Volume 49 of Mathematical Surveys and Monographs,Providence:

Amer. Math. Soc., 1997. - xiv+278 p.

Showalter R. Singular nonlinear evolution equations / R. Showalter // Rocky Mountain J.

Math. - 1980. - Vol. 10, No. 3, P. 499-507.

Tikhonov A. Equations of mathematical physics / A. Tikhonov, A. Samarskii - M.: Nauka,

(in Russian).

Tychonoff A. Theoremes d'unicite pour l'equation de la chaleur / A. Tychonoff // Mat. Sb.

- 1935. - Vol. 42, No. 2, P. 199-216.

Yoshida K. Functional Analysis [Russian translation] / K. Yoshida - Mir, Moscow, 1967.


Посилання

  • Поки немає зовнішніх посилань.