МІШАНА ЗАДАЧА ДЛЯ РІВНЯННЯ ТИПУ КОЛИВАННЯ ПЛАСТИНКИ
Анотація
Розглянуто мішану задачу для рівняння
$$
u_{tt}+\sum\limits_{i,j,s,l=1}^{n}(a_{ij}^{sl}(x)u_{x_{i}x_{j}})_{x_{s}x_{l}} -\sum\limits_{i=1}^{n}(a_{i}(x)|u_{x_{i}}|^{q-2}u_{x_{i}})_{x_{i}} +b_{0}(x)u_{t}- -a_{0}(x)|u|^{p-2}u=0
$$
в обмеженій області. Одержано достатні умови існування локального розв'язку та неіснування глобального розв'язку.
$$
u_{tt}+\sum\limits_{i,j,s,l=1}^{n}(a_{ij}^{sl}(x)u_{x_{i}x_{j}})_{x_{s}x_{l}} -\sum\limits_{i=1}^{n}(a_{i}(x)|u_{x_{i}}|^{q-2}u_{x_{i}})_{x_{i}} +b_{0}(x)u_{t}- -a_{0}(x)|u|^{p-2}u=0
$$
в обмеженій області. Одержано достатні умови існування локального розв'язку та неіснування глобального розв'язку.
Повний текст:
PDFПосилання
- Поки немає зовнішніх посилань.