Relative growth of Hadamard compositions of entire Dirichlet  series

Oksana Mulyava, Myroslav Sheremeta, Yuriy Trukhan

Анотація


Let F(s)=n=1aexp{sλn} and Fj(s)=∑n=1an,jexp{sλn} be entire Dirichlet series with exponents 0λn↑+∞. The function F is called Hadamard composition of the genus m1 of the functions Fj if an=P(an,1,...,an,p), where P(x1,...,xp)=k1+...+kp=mck1... kpx1k1...xpkp is a homogeneous polynomial of degree m≥1. The growth of the function F with respect to the entire Dirichlet series G(s)=∑n=1gexp{sλn} is identified with the growth of the function M-1G(MF(σ)), where MF(σ)=sup{|F(σ+it)|: t∈ ℝ}. The dependence of the growth of a function M-1G(MF(σ)) on the growth of functions M-1G(MFj(σ)) is studied in terms of generalized orders and a generalized convergence class.


Повний текст:

PDF (English)

Посилання


Ch. Roy, On the relative order and lower order of an entire function, Bull. Calcutta Math. Soc. 102 (2010), no.1, 17-26.

S. K. Data and A. R. Maji, Relative order of entire functions in terms of their maximum terms, Int. J. Math. Anal., Ruse 5 (2011), no. 41-44, 2119-2126.

S. K. Data, T. Biswas, and Ch. Ghosh, Growth analysis of entire functions concerning generalized relative type and generalized relative weak type, Facta Univ., Ser. Math. Inf. 30 (2015), no. 3, 295-324.

S. K. Data, T. Biswas, and A. Hoque, Some results on the growth analysis of entire function using their maximum terms and relative L-order, J. Math. Ext. 10 (2016), no. 2, 59-73.

S. K. Data, T. Biswas, and P. Das, Some results on generalized relative order of meromorohic functions, Ufa Math. J. 8 (2016), no. 2, 95-103.

S. K. Data and T. Biswas, Growth analysis of entire functions of two complex variables, Sahand Commun. Math. Anal. 3 (2016), no. 2, 13-22. DOI: 20.1001.1.23225807.2016.03.2.2.7

S. K. Data and T. Biswas, Some growth analysis of entire functions in the form of vector valued Dirichlet series on the basis on their relative Ritt L-order and relative Ritt L-lower order, New Trends in Msth. Sci. 5 (2017), no. 2, 97-103. DOI: 10.20852/ntmsci.2017.159

O. M. Mulyava and M. M. Sheremeta, Relative growth of Dirichlet series, Mat. Stud. 49 (2018), no. 2, 158-164. DOI: 10.15330/ms.49.2.158-164

O. M. Mulyava and M. M. Sheremeta, Remarks to relative growth of entire Dirichlet series, Visnyk of Lviv Univ. Ser. Mech.-Math. 87 (2019), 73-81. DOI: 10.30970/vmm.2019.87.073-081

O. M. Mulyava and M. M. Sheremeta, Relative growth of entire Dirichlet series with different generalized orders, Bukovyn. Mat. Zh. 9 (2021), no. 2, 22-34. DOI: 10.31861/bmj2021.02.02 5

J. Hadamard, Theoreme sur le series entieres, Acta Math. 22 (1899), 55-63. DOI: 10.1007/BF02417870 4

J. Hadamard, La serie de Taylor et son prolongement analitique. Paris, C. Naud (Ed.). Scientia, Phys.-Math. 12, 1901. 102pp.

L. Bieberbach, Analytische Fortsetzung, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3, Springer-Verlag, Berlin, 1955. DOI: 10.1007/978-3-662-01270-3

O. M. Mulyava and M. M. Sheremeta, Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes. Mat. Stud. 51 (2019), no. 1, 25-34. DOI: 10.15330/ms.51.1.25-34.

A. I. Bandura, O. M. Mulyava, and M. M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpatian Math. Publ. 15 (2023), no. 1, 180-195. DOI: 10.15330/cmp.15.1.180-195.

M. M. Sheremeta, On two classes of positive functions and the belonging to them of main characteristics of entire functions, Mat. Stud. 19 (2003), no. 1, 75-82.

E. Seneta, Regularly varying functions, Lect, Notes Math., 508, Springer-Verlag, Berlin, 1976. DOI: 10.1007/BFb0079658

Ya. D. Pyanylo and M. N. Sheremeta, On the growth of entire fuctions given by Dirichlet series, Izv. Vyssh. Uchebn. Zaved., Mat. (1975), no. 10, 91-93 (in Russian).

M. M. Sheremeta, Entire Dirichlet series, ISDO, Kyiv, 1993 (in Ukrainian).

K. Sugimura, Ubertragung einiger Satze aus der Theorie der ganzen Funktionen auf Dirichletschen Reihen, Math. Z. 29 (1929), 264-277. DOI: 10.1007/BF01180529

A. F. Leont'ev, Series of exponents, Nauka, Moscow, 1976 (in Russian).

G. Valiron, General theory of integral functions. Toulouse, 1923.

P. K. Kampthan, A theorem of step functions, II, Instanbul univ. fen. fac.mecm. A 26 (1963), 65-69.

O. M. Mulyava, Convergence classes in theory of Dirichlet series, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky (1999), no. 3, 35-39. (in Ukrainian)

O. M. Mulyava and M. M. Sheremeta, Convergence classes of analytic functions, Publishing Lira-K, Kyiv, 2020.




DOI: http://dx.doi.org/10.30970/vmm.2023.95.083-093

Посилання

  • Поки немає зовнішніх посилань.