On regularly converging series on systems of functions in a disk

Myroslav Sheremeta

Анотація


Let f(z)=∑k=0fkzk be an entire transcendental function, (λn) be a sequence of positive numbers increasing to +∞ and the series A(z)=∑n=1anf(λnz) be regularly convergent in 𝔻={z:|z|<1}, i.e., ∑n=1|an|Mf(rλn)<+∞ for all  r∈[0,1), where Mf(r)=max{|f(z)|:|z|=r}. Suppose that α and β are slowly increasing such that x/β-1(cα(x))↑+∞, α(x/β-1(cα(x)))=(1+o(1))α(x) and α(ln x)=o(β(x)) as x0(c)≤x→+∞ for every c∈(0,+∞). It is proved, for example, that if an>0  for all n and α(ln n)=o(β(Γf(cλn)/ln n)) as n→∞, where Γf(r)=(d ln Mf(r))/(d lnr), then       $$
        \varlimsup\limits_{r\uparrow 1}\dfrac{\alpha(\ln\,M_A(r))}{\beta(1/(1-r))}=
        \varlimsup\limits_{k\to\infty}\dfrac{\alpha(\ln^+(|f_k|\mu_D(k))}{\beta(k)},
        $$
where μ𝔻(σ):=max{|an|exp{σln λn}:n≥0}.

Повний текст:

PDF (English)

Посилання


A. F. Leont'ev, Generalizations of exponential series, Nauka, Moscow, 1981 (in Russian).

B. V. Vinnitsky, Some approximation properties of generalized systems of exponentials, Drogobych, 1991, Dep. in UkrNIINTI 25.02.1991 (in Russian).

M. N. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved. Mat. (1967), no. 2, 100-108 (in Russian).

M. M. Sheremeta, Relative growth of series in system functions and Laplace-Stieltjes type integrals, Axioms 10 (2021), Art. ID 43. DOI: 10.3390/axioms10020043

M. M. Sheremeta, On the growth of series in systems of functions and Laplace-Stieltjes integrals, Mat. Stud. 55 (2021), no. 2, 124-131. DOI: 10.30970/ms.55.2.124-131

F. Beuermann, Wachstumsordnung, Koeffizientenwachstum und Nullstellendichte bei Potenzreihen mit endlichem Konvergenzkreis, Math. Z. 33 (1931) 35-44. DOI: 10.1007/BF01174345

N. V. Govorov, On the connection between the growth of a function analytic in a disk and the coefficients its power development, Trudy Novocherkassk. Politech. Institut. 100 (1959), 101-115 (in Russian).

P. K. Kamthan, Some properties of entire functions, Proc. Rajastan Acad. Sci. 10 (1963), no. 1, 14-20.

A. R. Reddy, On entire Dirichlet series of zero order, Tohoku Math. J., 18 (1966), no. 2, 144-155.

M. M. Sheremeta, On the connection between the growth of a function analytic in a disk and the moduli of the coefficients of its expansion into a Taylor series, DAN URSR, Ser. A. (1966), no. 6, 729-732 (in Ukrainian).

Yu. M. Gal', On the growth of analytic functions given by Dirichlet series absolute convergent in a half-plane, Drohobych, 1980. Manuscript deposited at VINITI, no. 4080-80 Dep. (in Russian)

M. M. Zelisko, Modification of the generalized order of entire Dirichlet series and its application, Visn. L'viv. Univ., Ser. Mekh.-Mat. 67 (2007), 147-152 (in Ukrainian).




DOI: http://dx.doi.org/10.30970/vmm.2022.94.098-108

Посилання

  • Поки немає зовнішніх посилань.