Remarks on lower estimates for characteristic functions of probability laws

Myroslav Sheremeta, Markiyan Dobushovskyy

Анотація


For the analytic in 𝔻R={z:|z|<R} characteristic function ϕ of a probability law F it is investigated conditions on WF(x)=1-F(x)+F(-x) (x≥0) and a positive continuous function h increasing to +∞, under which h(ln(M(r,ϕ)))≥(1+o(1))/(R-r) or ln(M(r,ϕ))≥(1+o(1))h(1/(R-r)) as r↑R, where M(r,ϕ)=max{|ϕ(z)|:|z|=r<R}.

Повний текст:

PDF (English)

Посилання


Ju. V. Linnik and I. V. Ostrovskii, Decompositon of random variables and veсtors, Nauka, Moscow, 1972 (in Russian).

M. I. Parola and M. M. Sheremeta, Estimates from below for characteristic functions of probability laws, Mat. Stud. 39 (2013), no. 1, 54-66.




DOI: http://dx.doi.org/10.30970/vmm.2022.94.089-097

Посилання

  • Поки немає зовнішніх посилань.