On spaces of idempotent measures with finite supports

Iurii Marko, Mykhailo Zarichnyi

Анотація


The main result states that the space of idempotent measures ̅Iω(X) with finite support  on a space X is homeomorphic to the pre-Hilbert space l2f if and only if X is a σ-compact, strongly countable-dimensional infinite metric space.

Повний текст:

PDF (English)

Посилання


D. W. Curtis and N. To Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ0-dimensional linear metric spaces, Topology Appl. 19 (1985), no. 3, 251-260. DOI: 10.1016/0166-8641(85)90005-7.

М. М. Заричный, Пространства и отображения идемпотентных мер, Изв. РАН. Сер. матем. 74 (2010), no. 3, 45-64. DOI: 10.4213/im2785; English version: M. M. Zarichnyi, Spaces and maps of idempotent measures, Izv. Math. 74 (2010), no. 3, 481-499. DOI: 10.1070/IM2010v074n03ABEH002495

D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), no. 1, 97-107. DOI: 10.1016/0166-8641(86)90081-7

D. W. Curtis, T. Dobrowolski, and J. Mogilski, Some applications of the topological characterizations of the sigma-compact spaces l2f and Σ, Trans. Amer. Math. Sot. 284 (1984), no. 2, 837-846. DOI: 10.1090/S0002-9947-1984-0743748-7

В. Н. Басманов, Ковариантные функторы конечных степеней и связность, Докл. АН СССР 279 (1984), no. 6, 1289-1293; English version: V. N. Basmanov, Covariant functors, retracts, and dimension, Sov. Math., Dokl. 28 (1983), 182-185.

M. M. Zarichnyi, Functors and spaces in idempotent mathematics, Bukovyn. Mat. Zh. 9 (2021), no. 1, 171-179 (in Ukrainian). DOI: 10.31861/bmj2021.01.14

L. Bazylevych, D. Repovs, and M. Zarichnyi, Spaces of idempotent measures of compact metric spaces, Topology Appl. 157 (2010), no. 1, 136-144. DOI: 10.1016/j.topol.2009.04.040

R. D. Anderson, A characterization of apparent boundaries of the Hilbert cube, Notices Amer. Math. Soc. 16 (1969), 429.

Iu. Marko, Spaces of idempotent measures and absolute retracts, Visnyk Lviv. Univ. Ser. Mech.-Mat. 92 (2021), 86-92. DOI: 10.30970/vmm.2021.92.086-092.




DOI: http://dx.doi.org/10.30970/vmm.2022.94.072-078

Посилання

  • Поки немає зовнішніх посилань.