On the semigroup of injective monoid endomorphisms of the monoid Bω with the two-elements family ℱ of inductive nonempty subsets of ω

Oleg Gutik, Inna Pozdniakova

Анотація


We study injective endomorphisms of the semigroup Bω with the two-elements family ℱ of inductive nonempty subsets of ω. We describe the elements of the semigroup End1*(Bω) of all injective monoid endomorphisms of the monoid Bω, and show that Green's relations ℜ, 𝔏, ℌ, 𝔇, and 𝔍  on End1*(Bω) coincide with the relation of equality.

Повний текст:

PDF (English)

Посилання


A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

O. Gutik and O. Lysetska, On the semigroup Bω which is generated by the family ℱ of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 34-50. DOI: 10.30970/vmm.2021.92.034-050

O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019

O. Gutik and M. Mykhalenych, On group congruences on the semigroup Bω and its homomorphic retracts in the case when the family consists of inductive non-empty subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 91 (2021), 5-27 (in Ukrainian). DOI: 10.30970/vmm.2021.91.005-027

O. Gutik and M. Mykhalenych, On automorphisms of the semigroup Bω in the case when the family ℱ consists of nonempty inductive subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 93 (2022), 54-65. (in Ukrainian). DOI: 10.30970/vmm.2022.93.054-065

O. Gutik and O. Popadiuk, On the semigroup of injective endomorphisms of the semigroup Bωn which is generated by the family ℱn of finite bounded intervals of ω, Mat. Metody Fiz.-Mekh. Polya 65 (2022), no. 1-2, 42-57. DOI: 10.15407/mmpmf2022.65.1-2.42-57

O. Gutik and O. Popadiuk, On the semigroup Bωn which is generated by the family ℱn of finite bounded intervals of ω, Carpatian Math. Publ. 15 (2023), no. 2, 331-355. DOI: 10.15330/cmp.15.2.331-355

O. V. Gutik and I. V. Pozdniakova, On the semigroup generating by extended bicyclic semigroup and an ω-closed family, Mat. Metody Fiz.-Mekh. Polya 64 (2021), no. 1, 21-34 (in Ukrainian).

O. Gutik and I. Pozdniakova, On the group of automorphisms of the semigroup B with the family ℱ of inductive nonempty subsets of ω, Algebra Discrete Math. 35 (2023), no. 1, 42-61. DOI: 10.12958/adm2010

O. Gutik, O. Prokhorenkova, and D. Sekh, On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 5-16 (in Ukrainian). DOI: 10.30970/vmm.2022.93.042-053

M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.

O. Lysetska, On feebly compact topologies on the semigroup Bω1, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 48-56. DOI: 10.30970/vmm.2020.90.048-056

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

O. Popadiuk, On endomorphisms of the inverse semigroup of convex order isomorphisms of a bounded rank which are generated by Rees congruences, Visnyk Lviv. Univ. Ser. Mech.-Mat. 93 (2022), 34-41. DOI: 10.30970/vmm.2022.93.034-041

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).




DOI: http://dx.doi.org/10.30970/vmm.2022.94.032-055

Посилання

  • Поки немає зовнішніх посилань.