Напівлінійне стохастичне параболічне рівняння зі змінним показником нелінійності
Анотація
Повний текст:
PDFПосилання
E. A. Coayla-Teran, J. Ferreira, and P. M. D. Magalhães, Weak solutions for random nonlinear parabolic equations of nonlocal type, Random Oper. Stoch. Equ. 16 (2008), no. 3, 213-223. DOI: 10.1515/ROSE.2008.011
S. Peszat and J. Zabczyk, Stochastic partial differential equations with Levy noise, Vol. 113 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2007.
L. C. Evans, An introduction to stochastic differential equations, Vol. 82, Amer. Math. Soc., Providence, RI, 2013.
G. Leoni, A first course in Sobolev spaces, Amer. Math. Soc., Providence, RI, 2010.
O. Buhrii and N. Buhrii, Integro-differential systems with variable exponents of nonlinearity, Open Math. 15 (2017), 859-883. DOI: 10.1515/math-2017-0069
O. Buhrii and N. Buhrii, Nonlocal in time problem for anisotropic parabolic equations with variable exponents of nonlinearities, J. Math. Anal. Appl. 473 (2019), no. 2, 695-711. DOI: 10.1016/j.jmaa.2018.12.058
M. Bokalo, O. Buhrii, and N. Hryadil, Initial-boundary value problems for nonlinear elliptic-parabolic equations with variable exponents of nonlinearity in unbounded domains without conditions at infinity, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 19 (2020)2, Article ID 111700, 17p. DOI: 10.1016/j.na.2019.111700
M. M. Bokalo and O. V. Domanska, Initial-boundary value problem for higher-orders nonlinear elliptic-parabolic equations with variable exponents of the nonlinearity in unbounded domains without conditions at infinity, Mat. Stud. 59 (2023), no. 1, 86-105. DOI: 10.30970/ms.59.1.86-105
A. Bensoussan and R. Temam, Equations stochastiques du type Navier-Stokes, J. Funct. Anal. 13 (1973), no. 2, 195-222. DOI: 10.1016/0022-1236(73)90045-1
E. Pardoux, Stochastic partial differential equations. An introduction, Springer Briefs in Mathematics. Springer, Cham, 2021. DOI: 10.1007/978-3-030-89003-2
J. Ren, M. Röckner, and F.-Y. Wang, Stochastic generalized porous media and fast diffusion equations, J. Differ. Equations 238 (2007), no. 1, 118-152. DOI: 10.1016/j.jde.2007.03.027
C. Bauzet, G. Vallet, P. Wittbold, and A. Zimmermann, On a p(t,x)-Laplace evolution equation with a stochastic force, Stoch. Partial Differ. Equ., Anal. Comput. 1 (2013), no. 3, 552-570. DOI: 10.1007/s40072-013-0017-z
O. M. Buhrii, Visco-plastic, Newtonian, and dilatant fluids: Stokes equations with variable exponent of nonlinearity, Mat. Stud. 49 (2018), no. 2, 165-180. DOI: 10.15330/ms.49.2.165-180
O. M. Buhrii and N. V. Buhrii, Doubly nonlinear elliptic-parabolic variational inequalities with variable exponents of nonlinearities, Adv. Nonlinear Var. Inequal. 22 (2019), no. 2, 1-22.
K. Kuratowski and C. Ryll-Nardzewski, General theorem on selector, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403.
C. J. Himmelberg and F. S. van Vleck, Some selection theorems for measurable functions, Can. J. Math. 21 (1969), 394-399. DOI: 10.4153/CJM-1969-041-7
L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, London, 1973.
DOI: http://dx.doi.org/10.30970/vmm.2022.93.108-121
Посилання
- Поки немає зовнішніх посилань.