The momoid of order isomorphisms between principal filters of σℕκ

Taras Mokrytskyi

Анотація


Consider the following generalization of the bicyclic monoid. Let κ be any infinite cardinal and let ℐ𝒫ℱ(σℕκ) be the semigroup of all order isomorphisms between principal filters of the set σℕκ with the product order. We shall study algebraic properties of the semigroup ℐ𝒫ℱ(σℕκ), show that it is bisimple, E-unitary, F-inverse semigroup, describe Green's relations on ℐ𝒫ℱ(σℕκ), describe the group of units H(𝕀)  of the semigroup ℐ𝒫ℱ(σℕκ) and describe its maximal subgroups. We prove that the semigroup ℐ𝒫ℱ(σℕκ) is isomorphic to the semidirect product 𝒮κ⋉σℬκ  of the semigroup  σℬκ  by the group 𝒮κ, show that every non-identity congruence ℭ on the semigroup ℐ𝒫ℱ(σℕκ)is a group congruence and describe the least group congruence on ℐ𝒫ℱ(σℕκ).

Повний текст:

PDF (English)

Посилання


O. Andersen, Ein Berichtuber die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.

L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521-529. DOI: 10.2307/1994222

T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no.2, 211-218.

T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803-2814. DOI: 10.1016/j.topol.2010.08.020

S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discr. Math. 21 (2016), no. 2, 163-183.

S. Bardyla and O. Gutik, On the lattice of weak topologies on the bicyclic monoid with adjoined zero, Algebra Discr. Math. 30 (2020), no. 1, 26-43. DOI: 10.12958/adm1459

M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. Sec. A 76 (1976), no. 21-23, 219-226.

I. Chuchman and O. Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers, Carpathian Math. Publ. 2 (2010), no. 1, 119-132.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.

O. Gutik and O. Lysetska, On the semigroup ℬω which is generated by the family ℱ of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021), 34-50. DOI: 10.30970/vmm.2021.92.034-050

O. Gutik and P. Khylynskyi, On a locally compact monoid of cofinite partial isometries of ℕ with adjoined zero,
Topol. Algebra Appl. 10 (2022), no. 1, 233--245. DOI: 10.1515/taa-2022-0130

O. Gutik and O. Krokhmalna, The monoid of monotone injective partial selfmaps of the poset (ℕ3,≤) with cofinite domains and images,
Visn. L'viv. Univ., Ser. Mekh.-Mat. 88 (2019), 32-50.

O. Gutik and K. Maksymyk, On semitopological bicyclic extensions of linearly ordered groups,
Mat. Metody Fiz.-Mekh. Polya 59 (2016), no. 4, 31-43; reprinted version: J. Math. Sci. 238 (2019), no. 1, 32-45. DOI: 10.1007/s10958-019-04216-x

O. Gutik and K. Maksymyk, On semitopological interassociates of the bicyclic monoid,
Visn. L'viv. Univ., Ser. Mekh.-Mat. 82 (2016), 98-108.

O. Gutik and T. Mokrytskyi, The monoid of order isomorphisms between principal filters of n,
Eur. J. Math.6 (2020), no. 1, 14-36. DOI: 10.1007/s10958-019-04216-x

O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid,
Visn. L'viv. Univ., Ser. Mekh.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019

O. V. Gutik and O. B. Popadiuk, On the semigroup of injective endomorphisms of the semigroup ℬωn which is generated by the family ℱn of finite bounded intervals of ω,
Mat. Metody Fiz.-Mekh. 65 (2022), no. 1-2, 42-57.

O. Gutik and I. Pozdniakova, On the group of automorphisms of the semigroup ℬ with the family ℱ of inductive nonempty subsets of ω,
Algebra Discr. Math. (to appear) (arXiv:2206.12819).

O. Gutik and D. Repovs, On countably compact
0-simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: 10.1007/s00233-007-0706-x

O. Gutik and A. Savchuk, The semigroup of partial co-finite isometries of positive integers, Bukovyn. Mat. Zh. 6 (2018), no.1-2, 42-51 (in Ukrainian). DOI: 10.31861/bmj2018.01.042

O. Gutik and A. Savchuk, On the monoid of cofinite partial isometries of ℕ with the usual metric, Visn. L'viv. Univ., Ser. Mekh.-Mat. 89 (2020) 17-30. DOI: 10.30970/vmm.2020.89.017-030

J. A. Hildebrant and R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183

M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.

R. McFadden and L. O'Carroll, F-inverse semigroups, Proc. Lond. Math. Soc., III Ser. 22 (1971), no. 4, 652-666. DOI: 10.1112/plms/s3-22.4.652

T. Mokrytskyi, On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of ℕn with adjoined zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 87 (2019), 37-45. DOI: 10.30970/vmm.2019.87.037-045

W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Q. J. Math., Oxf. II. Ser. 17 (1966), no. 1, 151-159. DOI: 10.1093/qmath/17.1.151

M. Petrich, Inverse semigroups, John Wiley $&$ Sons, New York, 1984.

T. Saito, Proper ordered inverse semigroups, Pacif. J. Math. 15 (1965), no. 2, 649-666. DOI: 10.2140/pjm.1965.15.649

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).


Посилання

  • Поки немає зовнішніх посилань.