Semiaffine sets in Abelian groups

Iryna Banakh, Taras Banakh, Maria Kolinko, Oleksandr Ravsky

Анотація


A subset X of an Abelian group G is called semiaffine if for every x,y,z∈X the set {x+y-z,x-y+z} intersects X. We prove that a subset X of an Abelian group G is semiaffine if and only if one of the following conditions holds: (1) X=(H+a)∪(H+b) for some subgroup H of G and some elements a,b∈ X; (2) X=(H∖C)+g for some g∈G, some subgroup H of G and some midconvex subset C of the group H. A subset C of a group H is midconvex if for every x,y∈C, the set  (x+y)/2:={z∈H:2z=x+y} is a subset of C.

Повний текст:

PDF (English)

Посилання


I. Banakh, T. Banakh, M. Kolinko, and A. Ravsky, Metric characterizations of some subsets of the real line, arXiv:2305.07907, 2023, preprint.

I. Banakh, T. Banakh, M. Kolinko, and A. Ravsky, Midconvex sets in Abelian groups, arXiv:2305.12128, 2023, preprint.

J. Bolyai, Apendix: the theory of space, Akademiai Kiado, Budapest, 1987.

K. Borsuk and W. Szmielew, Foundations of geometry: Euclidean, Bolyai-Lobachevskian and projective geometry. Translated from the Polish by Erwin Marquit. Corrected reprint of the 1960 original published by North Holland. Dover Books on Mathematics. Mineola, Dover Publications, New-York, 2018.

M. J. Greenberg, Euclidean and non-Euclidean geometries. Development and history, 4th ed., W. H. Freeman and Company, New York, 2008.

R. Hartshorne, Geometry: Euclid and beyond, Undergraduate Texts in Math., Springer, Berlin, 2000.

D. Hilbert, Foundations of geometry, The Open Court Publ. Co., La Salle, Illinois, 1950.

W. Schwabhauser, W. Szmielew, und A. Tarski, Metamathematische methoden in der geometrie. Teil I: Ein axiomatischer aufbau der euklidischen geometrie. Teil II: metamathematische betrachtungen, Springer-Verlag, Berlin etc., 1983.




DOI: http://dx.doi.org/10.30970/vmm.2022.93.005-013

Посилання

  • Поки немає зовнішніх посилань.