The Darboux-Stefan problems with nonlocal conditions for one-dimensional hyperbolic equations and systems

Volodymyr Kyrylych, Olha Milchenko

Анотація


Boundary value problems with nonlocal conditions (undivided and integral) for a strictly hyperbolic equation of arbitrary order and a system of hyperbolic equations of the first order in the case of a degenerate initial condition interval to a point are considered, the case where the boundaries of the domain are unknown ahead is also considered.

Повний текст:

PDF (English)

Посилання


V. M. Kyrylych and O. Z. Slyusarchuk, Boundary value problems with nonlocal conditions for hyperbolic systems of equations with two independent variables, Mat. Stud. 53 (2020), no. 2, 159-180. DOI: 10.30970/ms.53.2.159-180

A. V. Bitsadze, Some classes of partial differential equations, Nauka, Moscow, 1981, 448 p. (in Russian).

G. Beregowa, W. Kyrylycz, W. Flud, Hiperboliczne zagadnienie Stefana o nielokalnych warunkach na prostej, Zesz. Nauk. Pol. Opolskiej Mat. 230 (1997), no. 14, 31-42.

V. M. Kyrylych and A. M. Filimonov, Generalized continuous solvability of the problem with unknown boundaries for singular hyperbolic systems of quasilinear equations, Mat. Stud. 30 (2008), no. 1, 42-60.

V. M. Kyrylych, O. O. Kukliuk, and O. V. Milchenko, Optimal control of a biopopulation theory problem under the same starting conditions of an evolutionary process, Prykl. Probl. Mekh. Mat. 19 (2021), 12-18 (in Ukrainian). DOI: 10.15407/apmm2021.19.12-18

Z. O. Melnyk, Example of a nonclassical boundary-value problem for the equations of vibrations of a string, Ukr. Mat. J. 32 (1980), no. 5, 446-448. DOI: 10.1007/BF01091573

R. P. Holten, Generalized Goursat problem, Pasif. J. Math. 12 (1962), no. 1, 207-224. DOI: 10.2140/pjm.1962.12.207

V. Thomee, Existence proofs for mixed problems for hyperbolic differential equations in two independent variables by means of the continuity method, Math. Scand. 6 (1958), no. 1, 5-32. DOI: 10.7146/math.scand.a-10531

V. E. Abolinya and A. D. Myshkis, On a mixed boundary-value problem for a linear hyperbolic system on a plane, Uch. Zap. Latv. Univ. 20 (1958), no. 3, 87-104 (in Russian).

Р. В. Андрусяк, В. М. Кирилич, А. Д. Мышкис, Локальная и глобальная разрешимости квазилинейной гиперболической задачи Стефана на прямой, Дифференц. уравнения, 42 (2006), no. 4, 489-503; English version: R. V. Andrusyak, V. M. Kirilich, and A. D. Myshkis, Local and global solvability of the quasilinear hyperbolic Stefan problem on the line, Differ. Equ. 42 (2006), no. 4, 519-536. DOI: 10.1134/S0012266106040094




DOI: http://dx.doi.org/10.30970/vmm.2021.92.099-110

Посилання

  • Поки немає зовнішніх посилань.