E-separated semigroups

Taras Banakh


A semigroup is called E-separated if for any distinct idempotents x,yXthere exists a homomorphism h:XY to a semilattice Y such that h(x)h(y). Developing results of Putcha and Weissglass, we characterize E-separated semigroups via certain commutativity properties of idempotents of X. Also we characterize E-separated semigroups in the class of π-regular E-semigroups.

Повний текст:

PDF (English)


F. Al-Kharousi, A. J. Cain, V. Maltcev, and A. Umar, A countable family of finitely presented infinite congruence-free monoids, Acta Sci. Math. (Szeged) 81 (2015), no. 3-4, 437-445. DOI: 10.14232/actasm-013-028-z

T. Banakh and O. Hryniv, The binary quasiorder on semigroups, Visnyk Lviv Univ. Ser. Mech. Math. 91 (2021), 28-39. DOI: 10.30970/vmm.2021.91.028-039

S. Bardyla, Classifying locally compact semitopological polycyclic monoids, Math. Bull. Shev. Sci. Soc. 13 (2016), 13-28.

S. Bardyla, On universal objects in the class of graph inverse semigroups, Eur. J. Math. 6 (2020), 4-13. DOI: 10.1007/s40879-018-0300-7

S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discrete Math. 21 (2016), no. 2, 163-183.

S. Bardyla and O. Gutik, On a complete topological inverse polycyclic monoid, Carp. Math. Publ. 8 (2016), no. 2, 183-194. DOI: 10.15330/cmp.8.2.183-194

S. Bogdanovic and M. Ciric, Primitive π-regular semigroups, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 10, 334-337.

S. Bogdanovic, M. Ciri c, and Z. Popovic, Semilattice decompositions of semigroups, University of Nis, Nis, 2011, viii+321 pp.

A. Cain and V. Maltcev, A simple non-bisimple congruence-free finitely presented monoid, Semigroup Forum 90 (2015), no. 1, 184-188. DOI: 10.1007/s00233-014-9607-y

J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.

M. Mitrovic, Semilattices of Archimedean semigroups, With a foreword by Donald B. McAlister. University of Nis. Faculty of Mechanical Engineering, Niv s, 2003. xiv+160 pp.

M. Mitrovic, On semilattices of Archimedean semigroup - a survey, Semigroups and languages, World Sci. Publ., River Edge, NJ, 2004, pp. 163-195. DOI: 10.1142/9789812702616_0010

M. Mitrovic and S. Silvestrov, Semilatice decompositions of semigroups. Hereditariness and periodicity - an overview, Algebraic structures and applications, Springer Proc. Math. Stat., 317, Springer, Cham, 2020, pp. 687--721. DOI: 10.1007/978-3-030-41850-2_29

M. Petrich, The maximal semilattice decomposition of a semigroup, Bull. Amer. Math. Soc. 69 (1963), no. 3, 342-344. DOI: 10.1090/S0002-9904-1963-10912-X

M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Z. textbf{85} (1964), 68-82. DOI: 10.1007/BF01114879

M. Petrich and N. R. Reilly, Completely regular semigroups, A Wiley-Intersci. Publ. John Wiley & Sons, Inc., New York, 1999.

Z. Popovi c, S. Bogdanovic, and M. Ciric, A note on semilattice decompositions of completely π-regular semigroups, Novi Sad J. Math. 34 (2004), no. 2, 167-174.

M. Putcha, Semilattice decompositions of semigroups, Semigroup Forum 6 (1973), no. 1, 12-34. DOI: 10.1007/BF02389104

M. Putcha and J. Weissglass, A semilattice decomposition into semigroups having at most one idempotent, Pacific J. Math. 39 (1971), 225-228. DOI: 10.2140/pjm.1971.39.225

R. Sulka, The maximal semilattice decomposition of a semigroup, radicals and nilpotency, Mat. Casopis Sloven. Akad. Vied 20 (1970), 172-180.

T. Tamura, The theory of construction of finite semigroups, I, Osaka Math. J. 8 (1956), 243-261.

T. Tamura, Semilattice congruences viewed from quasi-orders, Proc. Amer. Math. Soc. 41 (1973), no. 1, 75-79. DOI: 10.1090/S0002-9939-1973-0333048-X

T. Tamura, Semilattice indecomposable semigroups with a unique idempotent, Semigroup Forum 24 (1982), no.1, 77-82. DOI: 10.1007/BF02572757

T. Tamura and N. Kimura, On decompositions of a commutative semigroup, Kodai Math. Sem. Rep. 6 (1954), no. 4, 109-112. DOI: 10.2996/kmj/1138843534

T. Tamura and J. Shafer, Another proof of two decomposition theorems of semigroups, Proc. Japan Acad. 42 (1966), no. 7, 685-687. DOI: 10.3792/pja/1195521874

DOI: http://dx.doi.org/10.30970/vmm.2021.92.017-033


  • Поки немає зовнішніх посилань.