A note on feebly compact semitopological symmetric inverse semigroups of a bounded finite rank

Oleg Gutik

Анотація


We study feebly compact shift-continuous T1-topologies on the symmetric inverse semigroup Iλn of finite transformations of the rank n. It is proved that such T1-topology is sequentially pracompact if and only if it is feebly compact. Also, we show that every shift-continuous feebly ω-bounded T1-topology on Iλn.

Повний текст:

PDF (English)

Посилання


A. V. Arkhangel'skii, Topological function spaces, Kluwer Publ., Dordrecht, 1992.

T. Banakh and A. Ravsky, On feebly compact paratopological groups, Topology Appl. 284 (2020), Art. ID 107363. DOI: 10.1016/j.topol.2020.107363

R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958), no. 3, 500-506. DOI: 10.1090/S0002-9939-1958-0097043-2

J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The theory of topological semigroups, Vol. I, Marcell Dekker, Inc., New York and Basel, 1983.

C. Chevalley and O. Frink, Jr., Bicompactness of cartesian products, Bull. Amer. Math. Soc. 47 (1941), 612-614. DOI: 10.1090/S0002-9904-1941-07522-1

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Amer. Math. Soc. Surveys {bf 7}, Providence, R.I., 1961 and 1967.

W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacif. J. Math. 16 (1966), no. 3, 483-496. DOI: 10.2140/pjm.1966.16.483

A. Dorantes-Aldama and D. Shakhmatov, Selective sequential pseudocompactness,
Topology Appl. 222 (2017), 53-69. DOI: 10.1016/j.topol.2017.02.016

A. Dow, J. R. Porter, R. M. Stephenson, and R. G. Woods, Spaces whose pseudocompact subspaces are closed subsets, Appl. Gen. Topol. 5 (2004), no. 2, 243-264. DOI: 10.4995/agt.2004.1973

R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.

O. Gutik, On closures in semitopological inverse semigroups with continuous inversion, Algebra Discrete Math. 18 (2014), no. 1, 59-85.

O. Gutik, On feebly compact semitopological symmetric inverse semigroups of a bounded finite rank, Visn. L'viv. Univ., Ser. Mekh.-Mat. 83 (2017), 42-57.

O. Gutik, Feebly compact semitopological symmetric inverse semigroups of a bounded finite rank, Conference "Dynamical methods in Algebra, Geometry and Topology", 4-6 July, 2018. Udine, Italy. P. 4.

O. Gutik, J. Lawson, and D. Repovs, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78 (2009), no. 2, 326-336. DOI: 10.1007/s00233-008-9112-2

O. V. Gutik and K. P. Pavlyk, Topological semigroups of matrix units, Algebra Discrete Math. (2005), no. 3, 1-17.

O. V. Gutik and K. P. Pavlyk, Pseudocompact primitive topological inverse semigroups, Mat. Metody Phis.-Mech. Polya. 56 (2013), no. 2, 7-19; reprinted version: J. Math. Sc. 203 (2014), no. 1, 1-15. DOI: 10.1007/s10958-014-2087-5

O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ0-extensions, Mat. Stud. 32 (2009), no. 2, 115-131.

O. Gutik and O. Ravsky, On feebly compact inverse primitive (semi)topological semigroups, Mat. Stud. 44 (2015), no. 1, 3-26.

O. V. Gutik and O. V. Ravsky, Pseudocompactness, products and topological Brandt λ0-extensions of semitopological monoids, Math. Methods and Phys.-Mech. Fields 58 (2015), no. 2, 20-37; reprinted version: J. Math. Sc. 223 (2017), no. 1, 18-38. DOI: 10.1007/s10958-017-3335-2

O. Gutik and A. Ravsky, On old and new classes of feebly compact spaces, Visn. L'viv. Univ., Ser. Mekh.-Mat. 85 (2018), 48-59.

O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of finite rank n, Math. Methods and Phys.-Mech. Fields 52 (2009), no. 3, 7-14; reprinted version: J. Math. Sc. 171 (2010), no. 4, 425-432. DOI: 10.1007/s10958-010-0147-z

O. Gutik and A. Reiter, On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk Lviv Univ. Ser. Mech. Math. 72 (2010), 94-106 (in Ukrainian).

O. Gutik and O. Sobol, On feebly compact shift-continuous topologies on the semilattice expnλ, Visn. L'viv. Univ., Ser. Mekh.-Mat. 82 (2016), 128-136.

O. Gutik and O. Sobol, On feebly compact topologies on the semilattice expnλ, Mat. Stud. 46 (2016), no. 1, 29-43.

O. V. Gutik and O. Yu. Sobol, On feebly compact semitopological semilattice expnλ, Mat. Metody Fiz.-Mekh. Polya 61 (2018), no. 3, 16-23; reprinted version: J. Math. Sc. 254 (2021), no. 1, 13-20. DOI: 10.1007/s10958-021-05284-8

O. Gutik and O. Sobol, On the semigroup BωF which is generated by the family F of atomic subsets of ω, arXiv: 2108.11354, 2021, preprint.

D. W. Hajek and A. R. Todd, Compact spaces and infra H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), no. 2, 479-482. DOI: 10.2307/2040287

P. Komjath and V. Totik, Problems and theorems in classical set theory, Probl Books in Math, Springer, 2006.

M. V. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.

O. Lysetska, On feebly compact topologies on the semigroup BωF1, Visn. L'viv. Univ., Ser. Mekh.-Mat. 90 (2020), 48-56. DOI: 10.30970/vmm.2020.90.048-056

M. Matveev, A survey of star covering properties, Topology Atlas preprint, April 15, 1998.

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. DOI: 10.1007/BFb0073675

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).





DOI: http://dx.doi.org/10.30970/vmm.2021.91.040-053

Посилання

  • Поки немає зовнішніх посилань.