On the univalence radii of successive Gelfond-Leont'ev-Salagean and Gelfond-Leont'ev-Ruscheweyh derivatives

Myroslav Sheremeta

Анотація


For an analytic in the disk z:z<1 function f(z)=z+fkzki=1 and formal power series l(z)=z+k=1lkzk with lk>0 the operator
Dl,[S]nf(z)=z+k=2l1lk-1lkkfkzk
is called the Gelfond-Leont'ev-Salagean derivative and the operator
Dl,[R]nf(z)=z+k=2lk-1lnln+k-1kfkzk
is called the Gelfond-Leont'ev-Ruscheweyh derivative. By ρ[f] we denote the radius of the univalence of the function f. It is proved, for example, that for each n1
2-12f1f2l2l12nρDl,[S]nf2f1f2l2l12n
and
2-12f1f2ln+1l1lnρDl,[R]nf2f1f2ln+1l1ln.


Повний текст:

PDF (English)

Посилання


A. O. Gel'fond and A. F. Leont'ev, On a generalization of Fourier series, Mat. Sb. (N.S.), 29(71) (1951), no. 3, 477-500 (in Russian).

G. St. Salagean, Subclasses of univalent functions, In: C. A. Cazacu, N. Boboc, M. Jurchescu, I. Suciu (eds), Complex Analysis - Fifth Romanian-Finnish Seminar. Lecture Notes in Mathematics, vol 1013. Springer, Berlin, Heidelberg. 1983, pp. 362-372. DOI: 10.1007/BFb0066543

St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), no. 1, 109-115. DOI: 10.1090/S0002-9939-1975-0367176-1

M. M. Sheremeta, On the maximal terms of successive Gelfond-Leont'ev-Salagean and Gelfond-Leont'ev-Ruscheweyh derivatives of a function analytic in the unit disc, Mat. Stud. 37 (2012), no. 1, 58-64.

M. M. Sheremeta, Hadamard composition of Gelfond-Leont'ev-Salagean and Gelfond-Leont'ev-Ruscheweyh derivatives of functions analytic in the unit disc, Mat. Stud. 54 (2020), no.2, 115-134. DOI: 10.30970/ms.54.2.115-134

S. M. Shah and S. Y. Trimble, Univalent functions with univalent derivatives, II, Trans. Amer. Math. Soc. 144 (1969), 313-320. DOI: 10.2307/1995283

S. M. Shah and S. Y. Trimble, Univalence of derivatives of functions defined by gap power series, J. London. Math. Soc. (2) 9 (1975), no. 3, 501-512. DOI: 10.1112/jlms/s2-9.3.501

S. M. Shah and S. Y. Trimble, Univalence of derivatives of functions defined by gap power series, II, J. Math. Anal. Appl. 56 (1976), no. 1, 28-40. DOI: 10.1016/0022-247X(76)90005-6

G. P. Kapoor, O. P. Juneja, and J. Patel, Univalence of Gelfond-Leont'ev derivatives of analytic functions, Bull. Math. Soc. Sci. Math. Repub. Soc. Roum., Nouv. Ser. 33 (1989), no. 1, 25-34.

G. P. Kapoor and J. Patel, Univalence of Gelfond-Leont'ev derivatives of functions defined by gap power series, Rend. Mat. Appl., VII. Ser. 6 (1986), no. 4, 491-502.

М. М. Шеремета, Про радіуси однолистості похідних Гельфонда-Леонтьева, Укр. мат. ж. 47 (1995), no. 3, 390-399; English version: M. M. Sheremeta, On the univalence radii of Gelfond-Leont'ev derivatives, Ukr. Math. J. 47 (1995), no. 3, 454-464. DOI: 10.1007/BF01056307

O. Volokh and M. Sheremeta, On the univalence radii of Gelfond-Leont'ev derivatives of gap power series, Visnyk Lviv Univ. Ser. Mech.-Math. 68 (2008), 59-67 (in Ukrainian).




DOI: http://dx.doi.org/10.30970/vmm.2020.90.084-091

Посилання

  • Поки немає зовнішніх посилань.