On feebly compact topologies on the semigroup BωF1

Oleksandra Lysetska

Анотація


We study the Gutik-Mykhalenych semigroup BωF1 in the case when the family F1 consists of the empty set and all singleton in ω. We show that BωF1 is isomorphic to  subsemigroup Bωωmin of the Brandt ω-extension of the semilattice ω,min and describe all shift-continuous feebly compact T1-topologies on the semigroup Bωωmin. In particular, we prove that every shift-continuous feebly compact T1-topology τ on BωF1 is compact and moreover in this case  the space (BωF1,τ) is homeomorphic to the one-point Alexandroff compactification of the discrete countable space D(ω).

Повний текст:

PDF (English)

Посилання


R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958), no. 3, 500-506. DOI: 10.1090/S0002-9939-1958-0097043-2

S. Bardyla, An alternative look at the structure of graph inverse semigroups, Mat. Stud. 51 (2019), no. 1, 3-11. DOI: 10.15330/ms.51.1.3-11

T. Berezovski, O. Gutik, and K. Pavlyk, Brandt extensions and primitive topological inverse semigroups, Int. J. Math. Math. Sci. 2010 (2010) Article ID 671401, 13 pages. DOI: 10.1155/2010/671401

J. H. Carruth, J. A. Hildebrant and R. J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.

O. V. Gutik, On Howie semigroup, Mat. Metody Fiz.-Mekh. Polya 42 (1999), no. 4, 127-132 (in Ukrainian).

O. Gutik, On the group of automorphisms of the Brandt λ0-extension of a monoid with zero, Proceedings of the 16th ITAT Conference Information Technologies - Applications and Theory (ITAT 2016), Tatranske Matliare, Slovakia, September 15-19, 2016. CEUR-WS, Btatislava, 2016, pp. 237-240.

O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020) 5-19 (in Ukrainian).

O. V. Gutik, and K. P. Pavlyk, H-closed topological semigroups and topological Brandt λ-extensions, Mat. Metody Fiz.-Mekh. Polya 44 (2001), no. 3, 20-28, (in Ukrainian).

O. Gutik and K. Pavlyk, Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups, Visn. L'viv. Univ., Ser. Mekh.-Mat. 61 (2003), 98-105.

O. V. Gutik and K. P. Pavlyk, On Brandt λ0-extensions of semigroups with zero, Mat. Metody Fiz.-Mekh. Polya 49 (2006), no. 3, 26-40.

O. V. Gutik and K. P. Pavlyk, Pseudocompact primitive topological inverse semigroups, Mat. Metody Fiz.-Mekh. Polya 56 (2013), no. 2, 7-19; reprinted version: J. Math. Sci. 203 (2014), no. 1, 1-15. DOI: 10.1007/s10958-014-2087-5

O. V. Gutik and K. P. Pavlyk, On pseudocompact topological Brandt λ0-extensions of semitopological monoids, Topol. Algebra Appl. 1 (2013), 60-79. DOI: 10.2478/taa-2013-0007

O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ0-extensions, Mat. Stud. 32 (2009), no. 2, 115-131.

O. V. Gutik, K. P. Pavlyk, and A. R. Reiter, On topological Brandt semigroups, Mat. Metody Fiz.-Mekh. Polya 54 (2011), no. 2, 7-16 (in Ukrainian); English version in: J. Math. Sci. 184 (2012), no. 1, 1-11. DOI: 10.1007/s10958-012-0847-7

O. Gutik and O. Ravsky, On feebly compact inverse primitive (semi)topological semigroups, Mat. Stud. 44 (2015), no. 1, 3-26.

O. V. Gutik and O. V. Ravsky, Pseudocompactness, products and Brandt λ0-extensions of semitopological monoids, Mat. Metody Fiz.-Mekh. Polya 58 (2015), no. 2, 20--37; reprinted version: J. Math. Sci. 223 (2017), no. 1, 18-38. DOI: 10.1007/s10958-017-3335-2

O. Gutik and D. Repovs, On 0-simple countably compact topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: 10.1007/s00233-007-0706-x


O. Gutik and D. Repovs, On Brandt λ0-extensions of monoids with zero, Semigroup Forum 80 (2010), no. 1, 8-32. DOI: 10.1007/s00233-009-9191-8

O. V. Gutik and O. Yu. Sobol, On feebly compact semitopological semilattice expnλ, Mat. Metody Fiz.-Mekh. Polya 61 (2018), no. 3, 16-23; reprinted version: J. Math. Sc. 254 (2021), no. 1, 3-20. DOI: 10.1007/s10958-021-05284-8

O. Gutik and O. Sobol, Extensions of semigroups by symmetric inverse semigroups of a bounded finite rank, Visn. L'viv. Univ., Ser. Mekh.-Mat. 87 (2019), 5-36.

D. W. Hajek and A. R. Todd, Compact spaces and infra H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), no. 2, 479-482. DOI: 10.1090/S0002-9939-1975-0370499-3

M. Matveev, A survey of star covering properties, Topology Atlas preprint, April 15, 1998.

K. Pavlyk, Absolutely H-closed topological semigroups and Brandt λ-extensions, Applied Problems of Mechanics and Mathematics, 2 (2004), 61-68.

W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. DOI: 10.1007/BFb0073675

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119--1122 (in Russian).




DOI: http://dx.doi.org/10.30970/vmm.2020.90.048-056

Посилання

  • Поки немає зовнішніх посилань.